Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. W. Irion is active.

Publication


Featured researches published by F. W. Irion.


Bulletin of the American Meteorological Society | 2006

AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases

Moustafa T. Chahine; Thomas S. Pagano; Hartmut H. Aumann; Robert Atlas; Christopher D. Barnet; John Blaisdell; Luke Chen; Murty Divakarla; Eric J. Fetzer; Mitch Goldberg; Catherine Gautier; Stephanie Granger; Scott E. Hannon; F. W. Irion; Ramesh Kakar; Eugenia Kalnay; Bjorn Lambrigtsen; Sung-Yung Lee; John Le Marshall; W. Wallace McMillan; Larry M. McMillin; Edward T. Olsen; Henry E. Revercomb; Philip W. Rosenkranz; William L. Smith; David H. Staelin; L. Larrabee Strow; Joel Susskind; David C. Tobin; Walter Wolf

Abstract The Atmospheric Infrared Sounder (AIRS) and its two companion microwave sounders, AMSU and HSB were launched into polar orbit onboard the NASA Aqua Satellite in May 2002. NASA required the sounding system to provide high-quality research data for climate studies and to meet NOAAs requirements for improving operational weather forecasting. The NOAA requirement translated into global retrieval of temperature and humidity profiles with accuracies approaching those of radiosondes. AIRS also provides new measurements of several greenhouse gases, such as CO2, CO, CH4, O3, SO2, and aerosols. The assimilation of AIRS data into operational weather forecasting has already demonstrated significant improvements in global forecast skill. At NOAA/NCEP, the improvement in the forecast skill achieved at 6 days is equivalent to gaining an extension of forecast capability of six hours. This improvement is quite significant when compared to other forecast improvements over the last decade. In addition to NCEP, ECM...


Geophysical Research Letters | 1996

The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS space shuttle missions

M. R. Gunson; M. M. Abbas; M. C. Abrams; Mark Allen; Linda R. Brown; T. L. Brown; A. Y. Chang; A. Goldman; F. W. Irion; L. L. Lowes; Emmanuel Mahieu; G. L. Manney; H. A. Michelsen; Michael J. Newchurch; C. P. Rinsland; R. J. Salawitch; G. P. Stiller; G. C. Toon; Yuk L. Yung; Rodolphe Zander

The ATMOS Fourier transform spectrometer was flown for a fourth time on the Space Shuttle as part of the ATLAS-3 instrument payload in November 1994. More than 190 sunrise and sunset occultation events provided measurements of more than 30 atmospheric trace gases at latitudes 3–49°N and 65–72°S, including observations both inside and outside the Antarctic polar vortex. The instrument configuration, data retrieval methodology, and mission background are described to place in context analyses of ATMOS data presented in this issue.


Geophysical Research Letters | 1996

ATMOS stratospheric deuterated water and implications for troposphere‐stratosphere transport

Elisabeth J. Moyer; F. W. Irion; Yuk L. Yung; M. R. Gunson

Measurements of the isotopic composition of stratospheric water by the ATMOS instrument are used to infer the convective history of stratospheric air. The average water vapor entering the stratosphere is found to be highly depleted of deuterium, with δDw of −670±80 (67% deuterium loss). Model calculations predict, however, that under conditions of thermodynamic equilibrium, dehydration to stratospheric mixing ratios should produce stronger depletion to δDw of −800 to −900 (80–90% deuterium loss). Deuterium enrichment of water vapor in ascending parcels can occur only in conditions of rapid convection; enrichments persisting into the stratosphere require that those conditions continue to near-tropopause altitudes. We conclude that either the predominant source of water vapor to the uppermost troposphere is enriched convective water, most likely evaporated cloud ice, or troposphere-stratosphere transport occurs closely associated with tropical deep convection.


Journal of Climate | 2006

The Global Distribution of Supersaturation in the Upper Troposphere from the Atmospheric Infrared Sounder

Andrew Gettelman; Eric J. Fetzer; Annmarie Eldering; F. W. Irion

Abstract Satellite data from the Atmospheric Infrared Sounder (AIRS) is analyzed to examine regions of the upper troposphere that are supersaturated: where the relative humidity (RH) is greater than 100%. AIRS data compare well to other in situ and satellite observations of RH and provide daily global coverage up to 200 hPa, though satellite observations of supersaturation are highly uncertain. The climatology of supersaturation is analyzed statistically to understand where supersaturation occurs and how frequently. Supersaturation occurs in humid regions of the upper tropical tropopause near convection 10%–20% of the time at 200 hPa. Supersaturation is very frequent in the extratropical upper troposphere, occurring 20%–40% of the time, and over 50% of the time in storm track regions below the tropopause. The annual cycle of supersaturation is consistent for the ∼2.5 yr of data analyzed. More supersaturation is seen in the Southern Hemisphere midlatitudes, which may be attributed to higher temperature var...


Applied Optics | 2002

Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment Version 3 data retrievals

F. W. Irion; M. R. Gunson; G. C. Toon; Albert Y. Chang; Annmarie Eldering; Emmanuel Mahieu; G. L. Manney; Hope A. Michelsen; Elizabeth J. Moyer; Michael J. Newchurch; Gregory Ben Osterman; C. P. Rinsland; R. J. Salawitch; B. Sen; Yuk L. Yung; Rodolphe Zander

Version 3 of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment data set for some 30 trace and minor gas profiles is available. From the IR solar-absorption spectra measured during four Space Shuttle missions (in 1985, 1992, 1993, and 1994), profiles from more than 350 occultations were retrieved from the upper troposphere to the lower mesosphere. Previous results were unreliable for tropospheric retrievals, but with a new global-fitting algorithm profiles are reliably returned down to altitudes as low as 6.5 km (clouds permitting) and include notably improved retrievals of H2O, CO, and other species. Results for stratospheric water are more consistent across the ATMOS spectral filters and do not indicate a net consumption of H2 in the upper stratosphere. A new sulfuric-acid aerosol product is described. An overview of ATMOS Version 3 processing is presented with a discussion of estimated uncertainties. Differences between these Version 3 and previously reported Version 2 ATMOS results are discussed. Retrievals are available at http://atmos.jpl.nasa.gov/atmos.


Journal of Atmospheric Chemistry | 1992

The 1985 chlorine and fluorine inventories in the stratosphere based on ATMOS observations at 30° north latitude

Rodolphe Zander; M. R. Gunson; C. B. Farmer; C. P. Rinsland; F. W. Irion; Emmanuel Mahieu

The set of high-resolution infrared solar observations made with the Atmospheric Trace Molecule Spectroscopy (ATMOS)-Fourier transform spectrometer from onboard Spacelab 3 (30 April-1 May 1985) has been used to evaluate the total budgets of the odd chlorine and fluorine chemical families in the stratosphere. These budgets are based on volume mixing ratio profiles measured for HCl, HF, CH3Cl, ClONO2, CCl4, CCl2F2, CCl3F, CHClF2, CF4, COF2, and SF6 near 30° north latitude. When including realistic concentrations for species not measured by ATMOS, i.e., the source gases CH3CCl3 and C2F3Cl3 below 25 km, and the reservoirs ClO, HOCl and COFCl between 15 and 40 km (five gases actually measured by other techniques), the 30° N zonal 1985 mean total mixing ratio of chlorine, Cl, was found to be equal to (2.58±0.10) ppbv (parts per billion by volume) throughout the stratosphere, with no significant decrease near the stratopause. The results for total fluorine indicate a slight, but steady, decrease of its volume mixing ratio with increasing altitude, around a mean stratospheric value of (1.15±0.12) ppbv. Both uncertainties correspond to one standard deviation. These mean springtime 1985 stratospheric budgets are commensurate with values reported for the tropospheric Cl and F concentrations in the early 1980s, when allowance is made for the growth rates of their source gases at the ground and the time required for tropospheric air to be transported into the stratosphere. The results are discussed with emphasis on conservation of fluorine and chlorine and the partitioning among source, sink, and reservoir gases throughout the stratosphere.


Journal of Climate | 2006

Climatology of Upper-Tropospheric Relative Humidity from the Atmospheric Infrared Sounder and Implications for Climate

Andrew Gettelman; William D. Collins; Eric J. Fetzer; Annmarie Eldering; F. W. Irion; Phillip B. Duffy; G. Bala

Abstract Recently available satellite observations from the Atmospheric Infrared Sounder (AIRS) are used to calculate relative humidity in the troposphere. The observations illustrate many scales of variability in the atmosphere from the seasonal overturning Hadley–Walker circulation to high-frequency transient variability associated with baroclinic storms with high vertical resolution. The Asian monsoon circulation has a strong impact on upper-tropospheric humidity, with large humidity gradients to the west of the monsoon. The vertical structure of humidity is generally bimodal, with high humidity in the upper and lower troposphere, and a dry middle troposphere. The highest variances in humidity are seen around the midlatitude tropopause. AIRS data are compared to a simulation from a state-of-the-art climate model. The model does a good job of reproducing the mean humidity distribution but is slightly moister than the observations in the middle and upper troposphere. The model has difficultly reproducing...


Geophysical Research Letters | 1996

The 1994 northern midlatitude budget of stratospheric chlorine derived from ATMOS/ATLAS‐3 observations

Rodolphe Zander; Emmanuel Mahieu; M. R. Gunson; M. C. Abrams; A. Y. Chang; M. M. Abbas; C. P. Aellig; Andreas Engel; A. Goldman; F. W. Irion; Niklaus Kämpfer; H. A. Michelson; Michael J. Newchurch; C. P. Rinsland; R. J. Salawitch; G. P. Stiller; G. C. Toon

Volume mixing ratio (VMR) profiles of the chlorine-bearing gases HCl, ClONO2, CCl3F, CCl2F2, CHClF2, CCl4, and CH3Cl have been measured between 3 and 49° northern- and 65 to 72° southern latitudes with the Atmospheric Trace MOlecule Spectroscopy (ATMOS) instrument during the ATmospheric Laboratory for Applications and Science (ATLAS)-3 shuttle mission of 3 to 12 November 1994. A subset of these profiles obtained between 20 and 49°N at sunset, combined with ClO profiles measured by the Millimeter-wave Atmospheric Sounder (MAS) also from aboard ATLAS-3, measurements by balloon for HOCl, CH3CCl3 and C2Cl3F3, and model calculations for COClF indicates that the mean burden of chlorine, ClTOT, was equal to (3.53±0.10) ppbv (parts per billion by volume), 1-sigma, throughout the stratosphere at the time of the ATLAS 3 mission. This is some 37% larger than the mean 2.58 ppbv value measured by ATMOS within the same latitude zone during the Spacelab 3 flight of 29 April to 6 May 1985, consitent with an exponential growth rate of the chlorine loading in the stratosphere equal to 3.3%/yr or a linear increase of 0.10 ppbv/yr over the Spring-1985 to Fall-1994 time period. These findings are in agreement with both the burden and increase of the main anthropogenic Cl-bearing source gases at the surface during the 1980s, confirming that the stratospheric chlorine loading is primarily of anthropogenic origin.


Journal of Geophysical Research | 1999

Polar vortex dynamics during spring and fall diagnosed using trace gas observations from the Atmospheric Trace Molecule Spectroscopy instrument

G. L. Manney; Hope A. Michelsen; Michelle L. Santee; M. R. Gunson; F. W. Irion; A. E. Roche; Nathaniel J. Livesey

Trace gases measured by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during three Atmospheric Laboratory for Applications and Science (ATLAS) space-shuttle missions, in March/April 1992 (AT-1), April 1993 (AT-2), and November 1994 (AT-3) have been mapped into equivalent latitude/potential temperature (EqL/θ) coordinates. The asymmetry of the spring vortices results in coverage of subtropical to polar EqLs. EqL/θ fields of long-lived tracers in spring in both hemispheres show the net effects of descent at high EqL throughout the winter, reflecting strong descent in the upper stratosphere, decreasing descent at lower altitudes, and evidence of greater descent at the edge of the lower stratospheric vortex than in the vortex center; these results are consistent with trajectory calculations examining the history of the air measured by ATMOS in the month prior to each mission. EqL/θ tracer fields, the derived fields CH 4 -CH * 4 (CH * 4 is the expected CH 4 calculated from a prescribed relationship with N 2 O for fall) and NO y -NO * y (analogous to CH * 4 ), and parcel histories all indicate regions of strong mixing in the 1994 Southern Hemisphere (SH) spring vortex above 500 K, with the strongest mixing confined to the vortex edge region between 500 and 700 K, and mixing throughout the Northern Hemisphere (NH) spring vortex in 1993 below about 850 K. Parcel histories indicate mixing of extravortex air with air near the vortex edge below 500 K in the SH but not with air in the vortex core; they show extravortex air mixing well into the vortex above ∼450 K in the NH and into the vortex edge region below. The effects of severe denitrification are apparent in EqL/θ HNO 3 in the SH lower stratospheric spring vortex. The morphology of HNO 3 in the Arctic spring lower stratospheric vortex is consistent with the effects of descent. EqL/θ fields of ATMOS NO y -NO * y show decreases consistent with the effects of mixing throughout the NH lower stratospheric vortex. The EqL/θ-mapped ATMOS data thus indicate no significant denitrification during the 1992-1993 NH winter. Examination of H 2 O+2CH 4 shows that dehydration in SH spring 1994 extended up to ∼600 K; it also suggests the possibility of a small amount of dehydration in the NH 1993 spring vortex below ∼465 K. Ozone depletion is evident in the spring vortices in both hemispheres. Differences in autumn EqL/θ tracer fields between the missions reflect the fact that each succeeding mission took place ∼2 weeks later in the season, when the vortex had developed further. There was greater average descent and greater isolation of air in the developing vortex during each succeeding mission, consistent with progressively larger downward excursions of long-lived tracer contours observed in the upper stratosphere at high EqL.


Journal of Geophysical Research | 1999

Subsidence, mixing, and denitrification of Arctic polar vortex air measured during POLARIS

M. Rex; R. J. Salawitch; G. C. Toon; B. Sen; J. J. Margitan; G. B. Osterman; J.-F. Blavier; R. S. Gao; Stephen George Donnelly; E. R. Keim; J. A. Neuman; D. W. Fahey; C. R. Webster; D. C. Scott; Robert Herman; R. D. May; Elisabeth J. Moyer; M. R. Gunson; F. W. Irion; A. Y. Chang; C. P. Rinsland; T. P. Bui

We determine the degree of denitrification that occurred during the 1996-1997 Arctic winter using a technique that is based on balloon and aircraft borne measurements of NO y , N 2 O, and CH 4 . The NO 3 /N 2 O relation can undergo significant change due to isentropic mixing of subsided vortex air masses with extravortex air due to the high nonlinearity of the relation. These transport related reductions in NO y can be difficult to distinguish from the effects of denitrification caused by sedimentation of condensed HNO 3 . In this study, high-altitude balloon measurements are used to define the properties of air masses that later descend in the polar vortex to altitudes sampled by the ER-2 aircraft (i.e., ∼20 km) and mix isentropically with extravortex air. Observed correlations of CH 4 and N 2 O are used to quantify the degree of subsidence and mixing for individual air masses. On the basis of these results the expected mixing ratio of NO y resulting from subsidence and mixing, defined here as NO y ** , is calculated and compared with the measured mixing ratio of NO y . Values of NO y and NO y ** agree well during most parts of the flights. A slight deficit of NO y versus NO y ** is found only for a limited region during the ER-2 flight on April 26, 1997. This deficit is interpreted as indication for weak denitrification (∼2-3 ppbv) in that air mass. The small degree of denitrification is consistent with the general synoptic-scale temperature history of the sampled air masses, which did not encounter temperatures below the frostpoint and had relatively brief encounters with temperatures below the nitric acid trihydrate equilibrium temperature. Much larger degrees of denitrification would have been inferred if mixing effects had been ignored, which is the traditional approach to diagnose denitrification. Our analysis emphasizes the importance of using other correlations of conserved species to be able to accurately interpret changes in the NO y /N 2 O relation with respect to denitrification.

Collaboration


Dive into the F. W. Irion's collaboration.

Top Co-Authors

Avatar

M. R. Gunson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric J. Fetzer

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annmarie Eldering

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. C. Abrams

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Y. Chang

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brian H. Kahn

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

G. L. Manney

New Mexico Institute of Mining and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge