Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. R. Danly is active.

Publication


Featured researches published by C. R. Danly.


Review of Scientific Instruments | 2014

Neutron source reconstruction from pinhole imaging at National Ignition Facility

Petr L. Volegov; C. R. Danly; D. N. Fittinghoff; G. P. Grim; N. Guler; N. Izumi; T. Ma; F. E. Merrill; A. L. Warrick; C. H. Wilde; D. C. Wilson

The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics.


Journal of Applied Physics | 2016

Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility

N. Guler; Petr L. Volegov; Andrea Favalli; F. E. Merrill; Katerina Falk; D. Jung; J. L. Tybo; C. H. Wilde; Stephen Croft; C. R. Danly; O. Deppert; M. Devlin; Juan C. Fernandez; D. C. Gautier; Matthias Geissel; R. Haight; Christopher E. Hamilton; B. M. Hegelich; Daniela Henzlova; R. P. Johnson; G. Schaumann; Kurt F. Schoenberg; M. Schollmeier; Tsutomu Shimada; Martyn T. Swinhoe; T.N. Taddeucci; S.A. Wender; G. A. Wurden; Markus Roth

Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at the laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ∼5 × 109 n/sr, in a single laser shot, primarily due to ...


Review of Scientific Instruments | 2014

Nonuniform radiation damage in permanent magnet quadrupoles.

C. R. Danly; F. E. Merrill; D. Barlow; F. G. Mariam

We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANLs pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.


Scientific Reports | 2016

High-energy proton imaging for biomedical applications

Matthias Prall; Marco Durante; Thomas Berger; Bartos Przybyla; Christian Graeff; Phillipp M. Lang; Ciara LaTessa; Less Shestov; Palma Simoniello; C. R. Danly; F. G. Mariam; F. E. Merrill; Paul Nedrow; C. H. Wilde; Dmitry Varentsov

The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.


Review of Scientific Instruments | 2012

Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.

N. Guler; Petr L. Volegov; C. R. Danly; G. P. Grim; F. E. Merrill; C. H. Wilde

Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.


Review of Scientific Instruments | 2012

The Neutron Imaging Diagnostic at NIF

F. E. Merrill; Robert A. Buckles; Deborah J. Clark; C. R. Danly; Owen B. Drury; J M Dzenitis; V E Fatherly; D. N. Fittinghoff; R. Gallegos; Gary P. Grim; N. Guler; E. N. Loomis; S Lutz; Robert M. Malone; D D Martinson; D Mares; D J Morley; George L. Morgan; John A. Oertel; I.L. Tregillis; Petr L. Volegov; P B Weiss; C. H. Wilde; D. C. Wilson

A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.


Review of Scientific Instruments | 2016

Commissioning of the PRIOR proton microscope

D. Varentsov; O. Antonov; A. V. Bakhmutova; Cris W. Barnes; A. V. Bogdanov; C. R. Danly; S. Efimov; M. Endres; A. Fertman; A. Golubev; D. H. H. Hoffmann; B. Ionita; A. V. Kantsyrev; Ya. E. Krasik; P. M. Lang; I. Lomonosov; F. G. Mariam; N. V. Markov; F. E. Merrill; V. Mintsev; D. N. Nikolaev; V. Panyushkin; M. Rodionova; M. Schanz; Kurt F. Schoenberg; A. Semennikov; L. Shestov; V. S. Skachkov; V. I. Turtikov; S. Udrea

Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5-4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 μm spatial and 10 ns temporal resolutions of the proton microscope have been demonstrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This paper describes the PRIOR setup as well as the results of the first static and dynamic proton radiography experiments performed at GSI.


Review of Scientific Instruments | 2016

Combined neutron and x-ray imaging at the National Ignition Facility (invited)

C. R. Danly; K. Christensen; Valerie E. Fatherley; D. N. Fittinghoff; G. P. Grim; Robin L. Hibbard; N. Izumi; D. Jedlovec; F. E. Merrill; D. W. Schmidt; Raspberry Simpson; K. Skulina; Petr L. Volegov; C. H. Wilde

X-ray and neutrons are commonly used to image inertial confinement fusion implosions, providing key diagnostic information on the fuel assembly of burning deuterium-tritium (DT) fuel. The x-ray and neutron data provided are complementary as the production of neutrons and x-rays occurs from different physical processes, but typically these two images are collected from different views with no opportunity for co-registration of the two images. Neutrons are produced where the DT fusion fuel is burning; X-rays are produced in regions corresponding to high temperatures. Processes such as mix of ablator material into the hotspot can result in increased x-ray production and decreased neutron production but can only be confidently observed if the two images are collected along the same line of sight and co-registered. To allow direct comparison of x-ray and neutron data, a combined neutron x-ray imaging system has been tested at Omega and installed at the National Ignition Facility to collect an x-ray image along the currently installed neutron imaging line of sight. This system is described, and initial results are presented along with prospects for definitive coregistration of the images.


Review of Scientific Instruments | 2015

Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

C. R. Danly; T. H. Day; D. N. Fittinghoff; H. W. Herrmann; N. Izumi; Y. Kim; J. I. Martinez; F. E. Merrill; D. W. Schmidt; Raspberry Simpson; Petr L. Volegov; C. H. Wilde

Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.


Review of Scientific Instruments | 2014

Self characterization of a coded aperture array for neutron source imaging

Petr L. Volegov; C. R. Danly; D. N. Fittinghoff; N. Guler; F. E. Merrill; C. H. Wilde

The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.

Collaboration


Dive into the C. R. Danly's collaboration.

Top Co-Authors

Avatar

F. E. Merrill

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. H. Wilde

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. N. Fittinghoff

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Petr L. Volegov

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

N. Guler

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Valerie E. Fatherley

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gary P. Grim

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. P. Grim

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dan E. Bower

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

N. Izumi

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge