Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Y. P. Ng is active.

Publication


Featured researches published by C. Y. P. Ng.


Environmental Science & Technology | 2013

Bystander effect between zebrafish embryos in vivo induced by high-dose X-rays.

V. W. Y. Choi; C. Y. P. Ng; Alisa Kobayashi; Teruaki Konishi; Noriyoshi Suya; T. Ishikawa; Shuk Han Cheng; K.N. Yu

We employed embryos of the zebrafish, Danio rerio, for our studies on the in vivo bystander effect between embryos irradiated with high-dose X-rays and naive unirradiated embryos. The effects on the naive whole embryos were studied through quantification of apoptotic signals at 25 h post fertilization (hpf) through the terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay followed by counting the stained cells under a microscope. We report data showing that embryos at 5 hpf subjected to a 4-Gy X-ray irradiation could release a stress signal into the medium, which could induce a bystander effect in partnered naive embryos sharing the same medium. We further demonstrated that this bystander effect (induced through partnering) could be successfully suppressed through the addition of the nitric oxide (NO) scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) into the medium but not through the addition of the CO liberator tricarbonylchloro(glycinato)ruthenium(II) (CORM-3). This shows that NO was involved in the bystander response between zebrafish embryos induced through X-ray irradiation. We also report data showing that the bystander effect could be successfully induced in naive embryos by introducing them into the irradiated embryo conditioned medium (IECM) alone, i.e., without partnering with the irradiated embryos. The IECM was harvested from the medium that had conditioned the zebrafish embryos irradiated at 5 hpf with 4-Gy X-ray until the irradiated embryos developed into 29 hpf. NO released from the irradiated embryos was unlikely to be involved in the bystander effect induced through the IECM because of the short life of NO. We further revealed that this bystander effect (induced through IECM) was rapidly abolished through diluting the IECM by a factor of 2× or greater, which agreed with the proposal that the bystander effect was an on/off response with a threshold.


Journal of Radiological Protection | 2013

Adaptive response to ionising radiation induced by cadmium in zebrafish embryos.

V. W. Y. Choi; C. Y. P. Ng; M K Y Kong; Shuk Han Cheng; K.N. Yu

An adaptive response is a biological response where the exposure of cells or animals to a low priming exposure induces mechanisms that protect the cells or animals against the detrimental effects of a subsequent larger challenging exposure. In realistic environmental situations, living organisms can be exposed to a mixture of stressors, and the resultant effects due to such exposures are referred to as multiple stressor effects. In the present work we demonstrated, via quantification of apoptosis in the embryos, that embryos of the zebrafish (Danio rerio) subjected to a priming exposure provided by one environmental stressor (cadmium in micromolar concentrations) could undergo an adaptive response against a subsequent challenging exposure provided by another environmental stressor (alpha particles). We concluded that zebrafish embryos treated with 1 to 10 μM Cd at 5 h postfertilisation (hpf) for both 1 and 5 h could undergo an adaptive response against subsequent ~4.4 mGy alpha-particle irradiation at 10 hpf, which could be interpreted as an antagonistic multiple stressor effect between Cd and ionising radiation. The zebrafish has become a popular vertebrate model for studying the in vivo response to ionising radiation. As such, our results suggested that multiple stressor effects should be carefully considered for human radiation risk assessment since the risk may be perturbed by another environmental stressor such as a heavy metal.


Journal of Radiological Protection | 2013

The multiple stressor effect in zebrafish embryos from simultaneous exposure to ionising radiation and cadmium

C. Y. P. Ng; V. W. Y. Choi; A C L Lam; Shuk Han Cheng; K.N. Yu

Living organisms are exposed to a mixture of environmental stressors, and the resultant effects are referred to as multiple stressor effects. In the present work, we studied the multiple stressor effect in embryos of the zebrafish (Danio rerio) from simultaneous exposure to ionising radiation (alpha particles) and cadmium through quantification of apoptotic signals at 24 h postfertilisation (hpf) revealed by vital dye acridine orange staining. For each set of experiments, 32-40 dechorionated embryos were deployed, which were divided into four groups each having 8-10 embryos. The four groups of embryos were referred to as (1) the control group (C), which received no further treatments after dechorionation; (2) the Cd-dosed and irradiated group (CdIr), which was exposed to 100 μM Cd from 5 to 24 hpf, and also received about 4.4 mGy from alpha particles at 5 hpf; (3) the irradiated group (Ir), which received about 4.4 mGy from alpha particles at 5 hpf; and (4) the Cd-dosed group (Cd), which was exposed to 100 μM Cd from 5 to 24 hpf. In general, the CdIr, Ir and Cd groups had more apoptotic signals than the C group. Within the 12 sets of experimental results, two showed significant synergistic effects, one showed a weakly synergistic effect and nine showed additive effects. The multiple stressor effect of 100 μM Cd with ~4.4 mGy alpha-particle radiation resulted in an additive or synergistic effect, but no antagonistic effect. The failure to identify significant synergistic effects for some sets of data, and thus their subsequent classification as additive effects, might be a result of the relatively small magnitude of the synergistic effects. The results showed that the radiation risk could be perturbed by another environmental stressor such as a heavy metal, and as such a realistic human radiation risk assessment should in general take into account the multiple stressor effects.


Journal of Radiation Research | 2016

Non-induction of radioadaptive response in zebrafish embryos by neutrons

C. Y. P. Ng; Eva Yi Kong; Alisa Kobayashi; Noriyoshi Suya; Yukio Uchihori; Shuk Han Cheng; Teruaki Konishi; K.N. Yu

In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf.


Radiation Protection Dosimetry | 2015

Combined effects of depleted uranium and ionising radiation on zebrafish embryos

C. Y. P. Ng; Sandrine Pereira; Shuk Han Cheng; Christelle Adam-Guillermin; Jacqueline Garnier-Laplace; K.N. Yu

In the environment, living organisms are exposed to a mixture of stressors, and the combined effects are deemed as multiple stressor effects. In the present work, the authors studied the multiple stressor effect in embryos of the zebrafish (Danio rerio) from simultaneous exposure to alpha particles and depleted uranium (DU) through quantification of apoptotic signals at 24 h post-fertilisation (hpf) revealed by vital dye acridine orange staining. In each set of experiments, dechorionated zebrafish embryos were divided into 4 groups, each having 10 embryos: Group (C) in which the embryos did not receive any further treatment; Group (IU) in which the embryos received an alpha-particle dose of 0.44 mGy at 5 hpf and were then exposed to 100 µg l(-1) of DU from 5 to 6 hpf; Group (I) in which the embryos received an alpha-particle dose of 0.44 mGy at 5 hpf and Group (U) in which the dechorionated embryos were exposed to 100 µg l(-1) of DU from 5 to 6 hpf. The authors confirmed that an alpha-particle dose of 0.44 mGy and a DU exposure for 1 h separately led to hormetic and toxic effects assessed by counting apoptotic signals, respectively, in the zebrafish. Interestingly, the combined exposure led to an effect more toxic than that caused by the DU exposure alone, so effectively DU changed the beneficial effect (hormesis) brought about by alpha-particle irradiation into an apparently toxic effect. This could be explained in terms of the promotion of early death of cells predisposed to spontaneous transformation by the small alpha-particle dose (i.e. hormetic effect) and the postponement of cell death upon DU exposure.


Journal of Materials Chemistry B | 2013

A diamond nanocone array for improved osteoblastic differentiation

E.Y.W. Chong; C. Y. P. Ng; V. W. Y. Choi; L. Yan; Yang Yang; Wenjun Zhang; Kelvin W.K. Yeung; Xianfeng Chen; K.N. Yu

Efficient delivery of biomolecules to cells is of great importance in biology and medicine. To achieve this, we designed a novel type of densely packed diamond nanocone array to conveniently transport molecules to the cytoplasm of a great number of cells. The nanocone array was fabricated by depositing a thin layer of diamond film on a silicon substrate followed by bias-assisted reactive ion etching. The height of the diamond nanocones varied from 200 nm to 1 μm with tip radii of approximately 10 nm. Our fluorescein and propidium iodide staining results clearly demonstrated that dramatically enhanced delivery of fluorescein into cells was realized without leading to noticeable cell death with the aid of nanocone treatment. As a test case of the drug delivery application of the device, MC-3T3 cells in differentiation medium were applied to the nanocone array for enhanced intracellular delivery of the medium. This was confirmed by the fact that nanocone treated cells experienced much higher differentiation ability at an early stage in comparison with untreated cells. Overall, the results indicate that the diamond nanocone array provides a very simple but yet very effective approach to achieve delivery of molecules to a large number of cells.


Journal of Radiation Research | 2016

Combined effects of alpha particles and depleted uranium on Zebrafish (Danio rerio) embryos

C. Y. P. Ng; Sandrine Pereira; Shuk Han Cheng; Christelle Adam-Guillermin; Jacqueline Garnier-Laplace; K.N. Yu

The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined—(i) [ILUL]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [IHUH]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [IHUL]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure—in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5–6 hpf. The results were also compared with our previous work, which studied the effects of [ILUH]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [ILUL] and [IHUL] led to antagonistic effects, whereas [IHUH] led to an additive effect. The effect found for the previously studied case of [ILUH] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure.


Journal of Radiation Research | 2014

Exogenous carbon monoxide suppresses adaptive response induced in zebrafish embryos in vivo by microbeam protons

V. W. Y. Choi; C. Y. P. Ng; Alisa Kobayashi; Teruaki Konishi; Masakazu Oikawa; Shuk Han Cheng; Peter K.N. Yu

Dechorionated embryos of the zebrafish, Danio rerio, irradiated at 5 h post-fertilization (hpf) with 30 protons delivered to 10 separate positions each with an energy of 3.4 MeV from the microbeam irradiation facility (Single-Particle Irradiation System to Cell, acronym as SPICE) at the National Institute of Radiological Sciences (NIRS), developed radioadaptive response (RAR) against a subsequent challenging exposure of 2 Gy of X-ray irradiation at 10 hpf, corroborated by reduced apoptotic signals at 25 hpf revealed through terminal dUTP transferase-mediated nick end-labeling assay. The effects of the CO liberator tricarbonylchloro(glycinato)ruthenium (II) (CORM-3) on the induction of RAR were examined by transferring the irradiated embryos to freshly prepared medium with the chemical at different time points after the application of the priming dose. Our results showed that transfer of irradiated embryos into media with CORM-3 at 0, 1, 2 and 3 h after application of priming exposure significantly suppressed RAR, while transfer at 5 h did not suppress RAR. This was attributed to the protection of bystander cells from the released CO, which caused less de novo synthesis of factors and thus less efficient induction of RAR. Once the factors were synthesized, RAR was induced, which would not be further affected by the application of CORM-3 introduced at 5 h after the application of the priming dose. Clinical Trial Registration number if required: None.


PLOS ONE | 2017

Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP

Mehrdad Shahmohammadi Beni; C. Y. P. Ng; Dragana Krstic; D. Nikezic; K.N. Yu

Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient’s body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.


Aquatic Toxicology | 2016

Hormetic effect induced by depleted uranium in zebrafish embryos.

C. Y. P. Ng; Shuk Han Cheng; K.N. Yu

The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4h post fertilization (hpf), and were then exposed to 10 or 100μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.

Collaboration


Dive into the C. Y. P. Ng's collaboration.

Top Co-Authors

Avatar

K.N. Yu

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Shuk Han Cheng

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

V. W. Y. Choi

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Alisa Kobayashi

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Teruaki Konishi

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Noriyoshi Suya

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Eva Yi Kong

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Peter K.N. Yu

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Masakazu Oikawa

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge