Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cagdas D. Son is active.

Publication


Featured researches published by Cagdas D. Son.


Aaps Journal | 2009

Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery.

Henry A. Lester; Cheng Xiao; Rahul Srinivasan; Cagdas D. Son; Julie M. Miwa; Rigo Pantoja; Matthew R. Banghart; Dennis A. Dougherty; Alison Goate; Jen C. Wang

The acronym SePhaChARNS, for “selective pharmacological chaperoning of acetylcholine receptor number and stoichiometry,” is introduced. We hypothesize that SePhaChARNS underlies classical observations that chronic exposure to nicotine causes “upregulation” of nicotinic receptors (nAChRs). If the hypothesis is proven, (1) SePhaChARNS is the molecular mechanism of the first step in neuroadaptation to chronic nicotine; and (2) nicotine addiction is partially a disease of excessive chaperoning. The chaperone is a pharmacological one, nicotine; and the chaperoned molecules are α4β2* nAChRs. SePhaChARNS may also underlie two inadvertent therapeutic effects of tobacco use: (1) the inverse correlation between tobacco use and Parkinson’s disease; and (2) the suppression of seizures by nicotine in autosomal dominant nocturnal frontal lobe epilepsy. SePhaChARNS arises from the thermodynamics of pharmacological chaperoning: ligand binding, especially at subunit interfaces, stabilizes AChRs during assembly and maturation, and this stabilization is most pronounced for the highest-affinity subunit compositions, stoichiometries, and functional states of receptors. Several chemical and pharmacokinetic characteristics render exogenous nicotine a more potent pharmacological chaperone than endogenous acetylcholine. SePhaChARNS is modified by desensitized states of nAChRs, by acid trapping of nicotine in organelles, and by other aspects of proteostasis. SePhaChARNS is selective at the cellular, and possibly subcellular, levels because of variations in the detailed nAChR subunit composition, as well as in expression of auxiliary proteins such as lynx. One important implication of the SePhaChARNS hypothesis is that therapeutically relevant nicotinic receptor drugs could be discovered by studying events in intracellular compartments rather than exclusively at the surface membrane.


The Journal of General Physiology | 2011

Nicotine up-regulates α4β2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning

Rahul Srinivasan; Rigo Pantoja; Fraser J. Moss; Elisha D. W. Mackey; Cagdas D. Son; Julie M. Miwa; Henry A. Lester

The up-regulation of α4β2* nicotinic acetylcholine receptors (nAChRs) by chronic nicotine is a cell-delimited process and may be necessary and sufficient for the initial events of nicotine dependence. Clinical literature documents an inverse relationship between a person’s history of tobacco use and his or her susceptibility to Parkinson’s disease; this may also result from up-regulation. This study visualizes and quantifies the subcellular mechanisms involved in nicotine-induced nAChR up-regulation by using transfected fluorescent protein (FP)-tagged α4 nAChR subunits and an FP-tagged Sec24D endoplasmic reticulum (ER) exit site marker. Total internal reflection fluorescence microscopy shows that nicotine (0.1 µM for 48 h) up-regulates α4β2 nAChRs at the plasma membrane (PM), despite increasing the fraction of α4β2 nAChRs that remain in near-PM ER. Pixel-resolved normalized Förster resonance energy transfer microscopy between α4-FP subunits shows that nicotine stabilizes the (α4)2(β2)3 stoichiometry before the nAChRs reach the trans-Golgi apparatus. Nicotine also induces the formation of additional ER exit sites (ERES). To aid in the mechanistic analysis of these phenomena, we generated a β2enhanced-ER-export mutant subunit that mimics two regions of the β4 subunit sequence: the presence of an ER export motif and the absence of an ER retention/retrieval motif. The α4β2enhanced-ER-export nAChR resembles nicotine-exposed nAChRs with regard to stoichiometry, intracellular mobility, ERES enhancement, and PM localization. Nicotine produces only small additional PM up-regulation of α4β2enhanced-ER-export receptors. The experimental data are simulated with a model incorporating two mechanisms: (1) nicotine acts as a stabilizing pharmacological chaperone for nascent α4β2 nAChRs in the ER, eventually increasing PM receptors despite a bottleneck(s) in ER export; and (2) removal of the bottleneck (e.g., by expression of the β2enhanced-ER-export subunit) is sufficient to increase PM nAChR numbers, even without nicotine. The data also suggest that pharmacological chaperoning of nAChRs by nicotine can alter the physiology of ER processes.


Biochemistry | 2008

Unnatural Amino Acid Replacement in a Yeast G Protein-Coupled Receptor in Its Native Environment

Li Yin Huang; George Umanah; Melinda Hauser; Cagdas D. Son; Boris Arshava; Fred Naider; Jeffrey M. Becker

Ste2p is the G protein-coupled receptor (GPCR) for the tridecapeptide pheromone alpha factor of Saccharomyces cerevisiae. This receptor-pheromone pair has been used extensively as a paradigm for investigating GPCR structure and function. Expression in yeast harboring a cognate tRNA/aminoacyl-tRNA synthetase pair specifically evolved to incorporate p-benzoyl- l-phenylalanine (Bpa) in response to the amber codon allowed the biosynthesis of Bpa-substituted Ste2p in its native cell. We replaced natural amino acid residues in Ste2p with Bpa by engineering amber TAG stop codons into STE2 encoded on a plasmid. Several of the expressed Bpa-substituted Ste2p receptors exhibited high-affinity ligand binding, and incorporation of Bpa into Ste2p influenced biological activity as measured by growth arrest of whole cells in response to alpha factor. We found that, at concentrations of 0.1-0.5 mM, a dipeptide containing Bpa could be used to enhance delivery of Bpa into the cell, while at 2 mM, both dipeptide and Bpa were equally effective. The application of a peptide delivery system for unnatural amino acids will extend the use of the unnatural amino acid replacement methodology to amino acids that are impermeable to yeast. Incorporation of Bpa into Ste2p was verified by mass spectrometric analysis, and two Bpa-Ste2p mutants were able to selectively capture alpha factor into the ligand-binding site after photoactivation. To our knowledge, this is the first experimental evidence documenting an unnatural amino acid replacement in a GPCR expressed in its native environment and the use of a mutated receptor to photocapture a peptide ligand.


Molecular Pharmacology | 2009

Nicotine Normalizes Intracellular Subunit Stoichiometry of Nicotinic Receptors Carrying Mutations Linked to Autosomal Dominant Nocturnal Frontal Lobe Epilepsy

Cagdas D. Son; Fraser J. Moss; Bruce N. Cohen; Henry A. Lester

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is linked with high penetrance to several distinct nicotinic receptor (nAChR) mutations. We studied (α4)3(β2)2 versus (α4)2(β2)3 subunit stoichiometry for five channel-lining M2 domain mutations: S247F, S252L, 776ins3 in α4, V287L, and V287M in β2. α4 and β2 subunits were constructed with all possible combinations of mutant and wild-type (WT) M2 regions, of cyan and yellow fluorescent protein, and of fluorescent and nonfluorescent M3-M4 loops. Sixteen fluorescent subunit combinations were expressed in N2a cells. Förster resonance energy transfer (FRET) was analyzed by donor recovery after acceptor photobleaching and by pixel-by-pixel sensitized emission, with confirmation by fluorescence intensity ratios. Because FRET efficiency is much greater for adjacent than for nonadjacent subunits and the α4 and β2 subunits occupy specific positions in nAChR pentamers, observed FRET efficiencies from (α4)3(β2)2 carrying fluorescent α4 subunits were significantly higher than for (α4)2(β2)3; the converse was found for fluorescent β2 subunits. All tested ADNFLE mutants produced 10 to 20% increments in the percentage of intracellular (α4)3(β2)2 receptors compared with WT subunits. In contrast, 24- to 48-h nicotine (1 μM) exposure increased the proportion of (α4)2(β2)3 in WT receptors and also returned subunit stoichiometry to WT levels for α4S248F and β2V287L nAChRs. These observations may be relevant to the decreased seizure frequency in patients with ADNFLE who use tobacco products or nicotine patches. Fluorescence-based investigations of nAChR subunit stoichiometry may provide efficient drug discovery methods for nicotine addiction or for other disorders that result from dysregulated nAChRs.


Biochemistry | 2009

Cross-linking of a DOPA-containing peptide ligand into its G protein-coupled receptor.

George Umanah; Cagdas D. Son; Fa-Xiang Ding; Fred Naider; Jeffrey M. Becker

The interaction between a 3,4-dihydroxyphenylalanine (DOPA) labeled analogue of the tridecapeptide alpha-factor (W-H-W-L-Q-L-K-P-G-Q-P-M-Y) and Ste2p, a Saccharomyces cerevisiae model G protein-coupled receptor (GPCR), has been analyzed by periodate-mediated cross-linking. Chemically synthesized alpha-factor with DOPA substituting for tyrosine at position 13 and biotin tagged onto lysine(7)([Lys(7)(BioACA),Nle(12),DOPA(13)]alpha-factor; Bio-DOPA-alpha-factor) was used for cross-linking into Ste2p. The biological activity of Bio-DOPA-alpha-factor was about one-third that of native alpha-factor as determined by growth arrest assay and exhibited about a 10-fold lower binding affinity to Ste2p. Bio-DOPA-alpha-factor cross-linked into Ste2p as demonstrated by Western blot analysis using a neutravidin-HRP conjugate to detect Bio-DOPA-alpha-factor. Cross-linking was inhibited by excess native alpha-factor and an alpha-factor antagonist. The Ste2p-ligand complex was purified using a metal ion affinity column, and after cyanogen bromide treatment, avidin affinity purification was used to capture Bio-DOPA-alpha-factor-Ste2p cross-linked peptides. MALDI-TOF spectrometric analyses of the cross-linked fragments showed that Bio-DOPA-alpha-factor reacted with the Phe(55)-Met(69) region of Ste2p. Cross-linking of Bio-DOPA-alpha-factor was reduced by 80% using a cysteine-less Ste2p (Cys59Ser). These results suggest an interaction between position 13 of alpha-factor and residue Cys(59) of Ste2p. This study is the first to report DOPA cross-linking of a peptide hormone to a GPCR and the first to identify a residue-to-residue cross-link between Ste2p and alpha-factor, thereby defining a specific contact point between the bound ligand and its receptor.


Biochimica et Biophysica Acta | 2017

GPCR-Gα protein precoupling: Interaction between Ste2p, a yeast GPCR, and Gpa1p, its Gα protein, is formed before ligand binding via the Ste2p C-terminal domain and the Gpa1p N-terminal domain

Orkun Cevheroğlu; Jeffrey M. Becker; Cagdas D. Son

G protein coupled receptors bind ligands that initiate intracellular signaling cascades via heterotrimeric G proteins. In this study, involvement of the N-terminal residues of yeast G-alpha (Gpa1p) with the C-terminal residues of a full-length or C-terminally truncated Ste2p were investigated using bioluminescence resonance energy transfer (BRET), a non-radiative energy transfer phenomenon where protein-protein interactions can be quantified between a donor bioluminescent molecule and a suitable acceptor fluorophore. Constitutive and position-dependent BRET signal was observed in the absence of agonist (α-factor). Upon the activation of the receptors with α-factor, no significant change in BRET signal was observed. The location of Ste2p-Gpa1p heterodimer was investigated using confocal fluorescence microscopy and bimolecular fluorescence complementation (BiFC) assay, a technique where two non-fluorescent fragments of a fluorescent protein reassemble in vivo to restore fluorescence property thereby directly reporting a protein-protein interaction. BiFC experiments resulted in a dimerization signal intracellularly during biosynthesis on the endoplasmic reticulum (ER) and on the plasma membrane (PM). The constitutive BRET and BiFC signals observed on ER between Ste2p and Gpa1p in their quiescent and activated states are indicative of pre-coupling between these two proteins. This study is the first to show that the extreme N-terminus of yeast G protein alpha subunit is in close proximity to its receptor. The data suggests a pre-coupled heterodimer prior to receptor activation. The images presented in this study are the first direct in vivo evidence showing the localization of receptor - G protein heterodimers during biosynthesis and before reaching the plasma membrane.


Biochimica et Biophysica Acta | 2017

The yeast Ste2p G protein-coupled receptor dimerizes on the cell plasma membrane

Orkun Cevheroğlu; Gözde Kumaş; Melinda Hauser; Jeffrey M. Becker; Cagdas D. Son

Dimerization of G protein-coupled receptors (GPCR) may play an important role in maturation, internalization, signaling and/or pharmacology of these receptors. However, the location where dimerization occurs is still under debate. In our study, variants of Ste2p, a yeast mating pheromone GPCR, were tagged with split EGFP (enhanced green fluorescent protein) fragments inserted between transmembrane domain seven and the C-terminus or appended to the C-terminus. Bimolecular Fluorescence Complementation (BiFC) assay was used to determine where receptor dimerization occurred during protein trafficking by monitoring generation of EGFP fluorescence, which occurred upon GPCR dimerization. Our results suggest that these tagged receptors traffic to the membrane as monomers, undergo dimerization or higher ordered oligomerization predominantly on the plasma membrane, and are internalized as dimers/oligomers. This study is the first to provide direct in vivo visualization of GPCR dimerization/oligomerization, during trafficking to and from the plasma membrane.


Biochemistry | 2004

Identification of ligand binding regions of the Saccharomyces cerevisiae alpha-factor pheromone receptor by photoaffinity cross-linking.

Cagdas D. Son; Hasmik Sargsyan; Fred Naider; Jeffrey M. Becker


Biochemistry | 2002

Identification of a contact region between the tridecapeptide alpha-factor mating pheromone of Saccharomyces cerevisiae and its G protein-coupled receptor by photoaffinity labeling.

L. Keith Henry; Sanjay Khare; Cagdas D. Son; V. V. Suresh Babu; Fred Naider; Jeffrey M. Becker


Biochemistry | 2003

Sequences in the intracellular loops of the yeast pheromone receptor Ste2p required for G protein activation.

Andjelka Ćelić; Negin P. Martin; Cagdas D. Son; Jeffrey M. Becker; Fred Naider; Mark E. Dumont

Collaboration


Dive into the Cagdas D. Son's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Naider

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Henry A. Lester

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Fraser J. Moss

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rahul Srinivasan

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Boris Arshava

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fa-Xiang Ding

City University of New York

View shared research outputs
Researchain Logo
Decentralizing Knowledge