Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melinda Hauser is active.

Publication


Featured researches published by Melinda Hauser.


Infection and Immunity | 2001

Molecular Cloning and Characterization of WdPKS1, a Gene Involved in Dihydroxynaphthalene Melanin Biosynthesis and Virulence in Wangiella (Exophiala) dermatitidis

Bin Feng; Xu Wang; Melinda Hauser; Sarah Kaufmann; Simone Jentsch; Gerhard Haase; Jeffery M. Becker; Paul J. Szaniszlo

ABSTRACT 1,8-Dihydroxynaphthalene (1,8-DHN) is a fungal polyketide that contributes to virulence when polymerized to 1,8-DHN melanin in the cell walls of Wangiella dermatitidis, an agent of phaeohyphomycosis in humans. To begin a genetic analysis of the initial synthetic steps leading to 1,8-DHN melanin biosynthesis, a 772-bp PCR product was amplified from genomic DNA using primers based on conserved regions of fungal polyketide synthases (Pks) known to produce the first cyclized 1,8-DHN-melanin pathway intermediate, 1,3,6,8-tetrahydroxynaphthalene. The cloned PCR product was then used as a targeting sequence to disrupt the putative polyketide synthase gene, WdPKS1, in W. dermatitidis. The resultingwdpks1Δ disruptants showed no morphological defects other than an albino phenotype and grew at the same rate as their black wild-type parent. Using a marker rescue approach, the intactWdPKS1 gene was then successfully recovered from two plasmids. The WdPKS1 gene was also isolated independently by complementation of the mel3 mutation in an albino mutant of W. dermatitidis using a cosmid library. Sequence analysis substantiated that WdPKS1 encoded a putative polyketide synthase (WdPks1p) in a single open reading frame consisting of three exons separated by two short introns. This conclusion was supported by the identification of highly conserved Pks domains for a β-ketoacyl synthase, an acetyl-malonyl transferase, two acyl carrier proteins, and a thioesterase in the deduced amino acid sequence. Studies using a neutrophil killing assay and a mouse acute-infection model confirmed that all wdpks1Δ strains were less resistant to killing and less virulent, respectively, than their wild-type parent. Reconstitution of 1,8-DHN melanin biosynthesis in awdpks1Δ strain reestablished its resistance to killing by neutrophils and its ability to cause fatal mouse infections.


Molecular Membrane Biology | 2001

Multiplicity and regulation of genes encoding peptide transporters in Saccharomyces cerevisiae

Melinda Hauser; Vanny Narita; Amy M. Donhardt; Fred Naider; Jeffrey M. Becker

The model eukaryote Saccharomyces cerevisiae has two distinct peptide transport mechanisms, one for di-/tripeptides (the PTR system) and another for tetra-/pentapeptides (the OPT system). The PTR system consists of three genes, PTR1, PTR2 and PTR3. The transporter (Ptr2p), encoded by the gene PTR2, is a 12 transmembrane domain (TMD) integral membrane protein that translocates di-/tripeptides. Homologues to Ptr2p have been identified in virtually all organisms examined to date and comprise the PTR family of transport proteins. In S. cerevisiae, the expression of PTR2 is highly regulated at the cellular level by complex interactions of many genes, including PTR1, PTR3, CUP9 and SSY1. Oligopeptides, consisting of four to five amino acids, are transported by the 12 - 14 TMD integral membrane protein Opt1p. Unlike Ptr2p, distribution of this protein appears limited to fungi and plants, and there appears to be three paralogues in S. cerevisiae. This transporter has an affinity for enkephalin, an endogenous mammalian pentapeptide, as well as for glutathione. Although it is known that OPT1 is normally expressed only during sporulation, to date little is known about the genes and proteins involved in the regulation of OPT1 expression.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model.

Jeffrey M. Becker; Sarah Kauffman; Melinda Hauser; Liyin Huang; Molly Lin; Susan Sillaots; Bo Jiang; Deming Xu; Terry Roemer

One potentially rich source of possible targets for antifungal therapy are those Candida albicans genes deemed essential for growth under the standard culture (i.e., in vitro) conditions; however, these genes are largely unexplored as drug targets because essential genes are not experimentally amenable to conventional gene deletion and virulence studies. Using tetracycline-regulatable promoter-based conditional mutants, we investigated a murine model of candidiasis in which repressing essential genes in the host was achieved. By adding doxycycline to the drinking water starting 3 days prior to (dox - 3D) or 2 days post (dox + 2D) infection, the phenotypic consequences of temporal gene inactivation were assessed by monitoring animal survival and fungal burden in prophylaxis and acute infection settings. Of 177 selected conditional shut-off strains tested, the virulence of 102 was blocked under both repressing conditions, suggesting that the corresponding genes are essential for growth and survival in a murine host across early and established infection periods. Among these genes were those previously identified as antifungal drug targets (i.e., FKS1, ERG1, and ERG11), verifying that this methodology can be used to validate potential new targets. We also identify genes either conditionally essential or dispensable for in vitro growth but required for survival and virulence, including those in late stage ergosterol synthesis, or early steps in fatty acid or riboflavin biosynthesis. This study evaluates the role of essential genes with respect to pathogen virulence in a large-scale, systems biology context, and provides a general method for gene target validation and for uncovering unexpected antimicrobial targets.


Biochemistry | 2008

Unnatural Amino Acid Replacement in a Yeast G Protein-Coupled Receptor in Its Native Environment

Li Yin Huang; George Umanah; Melinda Hauser; Cagdas D. Son; Boris Arshava; Fred Naider; Jeffrey M. Becker

Ste2p is the G protein-coupled receptor (GPCR) for the tridecapeptide pheromone alpha factor of Saccharomyces cerevisiae. This receptor-pheromone pair has been used extensively as a paradigm for investigating GPCR structure and function. Expression in yeast harboring a cognate tRNA/aminoacyl-tRNA synthetase pair specifically evolved to incorporate p-benzoyl- l-phenylalanine (Bpa) in response to the amber codon allowed the biosynthesis of Bpa-substituted Ste2p in its native cell. We replaced natural amino acid residues in Ste2p with Bpa by engineering amber TAG stop codons into STE2 encoded on a plasmid. Several of the expressed Bpa-substituted Ste2p receptors exhibited high-affinity ligand binding, and incorporation of Bpa into Ste2p influenced biological activity as measured by growth arrest of whole cells in response to alpha factor. We found that, at concentrations of 0.1-0.5 mM, a dipeptide containing Bpa could be used to enhance delivery of Bpa into the cell, while at 2 mM, both dipeptide and Bpa were equally effective. The application of a peptide delivery system for unnatural amino acids will extend the use of the unnatural amino acid replacement methodology to amino acids that are impermeable to yeast. Incorporation of Bpa into Ste2p was verified by mass spectrometric analysis, and two Bpa-Ste2p mutants were able to selectively capture alpha factor into the ligand-binding site after photoactivation. To our knowledge, this is the first experimental evidence documenting an unnatural amino acid replacement in a GPCR expressed in its native environment and the use of a mutated receptor to photocapture a peptide ligand.


Journal of Biological Chemistry | 2007

The First Extracellular Loop of the Saccharomyces cerevisiae G Protein-coupled Receptor Ste2p Undergoes a Conformational Change upon Ligand Binding

Melinda Hauser; Sarah Kauffman; Byung-Kwon Lee; Fred Naider; Jeffrey M. Becker

In this study of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p, we present data indicating that the first extracellular loop (EL1) of the α-factor receptor has tertiary structure that limits solvent accessibility and that its conformation changes in a ligand-dependent manner. The substituted cysteine accessibility method was used to probe the solvent exposure of single cysteine residues engineered to replace residues Tyr101 through Gln135 of EL1 in the presence and absence of the tridecapeptide α-factor and a receptor antagonist. Surprisingly, many residues, especially those at the N-terminal region, were not solvent-accessible, including residues of the binding-competent yet signal transduction-deficient mutants L102C, N105C, S108C, Y111C, and T114C. In striking contrast, two N-terminal residues, Y101C and Y106C, were readily solvent-accessible, but upon incubation with α-factor labeling was reduced, suggesting a pheromone-dependent conformational change limiting solvent accessibility had occurred. Labeling in the presence of the antagonist, which binds Ste2p but does not initiate signal transduction, did not significantly alter reactivity with the Y101C and Y106C receptors, suggesting that the α-factor-dependent decrease in solvent accessibility was not because of steric hindrance that prevented the labeling reagent access to these residues. Based on these and previous observations, we propose a model in which the N terminus of EL1 is structured such that parts of the loop are buried in a solvent-inaccessible environment interacting with the extracellular part of the transmembrane domain bundle. This study highlights the essential role of an extracellular loop in activation of a G protein-coupled receptor upon ligand binding.


Infection and Immunity | 2001

WdChs2p, a class I chitin synthase, together with WdChs3p (class III) contributes to virulence in wangiella (Exophiala) dermatitidis

Zheng Wang; Li Zheng; Hongbo Liu; Qingfeng Wang; Melinda Hauser; Sarah Kauffman; Jeffery M. Becker; Paul J. Szaniszlo

ABSTRACT The chitin synthase structural gene WdCHS2 was isolated by screening a subgenomic DNA library of Wangiella dermatitidis by using a 0.6-kb PCR product of the gene as a probe. The nucleotide sequence revealed a 2,784-bp open reading frame, which encoded 928 amino acids, with a 59-bp intron near its 5′ end. Derived protein sequences showed highest amino acid identities with those derived from the CiCHS1 gene of Coccidioides immitis and the AnCHSC gene of Aspergillus nidulans. The derived sequence also indicated that WdChs2p is an orthologous enzyme of Chs1p of Saccharomyces cerevisiae, which defines the class I chitin synthases. Disruptions ofWdCHS2 produced strains that showed no obvious morphological defects in yeast vegetative growth or in ability to carry out polymorphic transitions from yeast cells to hyphae or to isotropic forms. However, assays showed that membranes of wdchs2Δ mutants were drastically reduced in chitin synthase activity. Other assays of membranes from awdchs1Δwdchs3Δwdchs4Δ triple mutant showed that their residual chitin synthase activity was extremely sensitive to trypsin activation and was responsible for the majority of zymogenic activity. Although no loss of virulence was detected when wdchs2Δ strains were tested in a mouse model of acute infection, wdchs2Δwdchs3Δ disruptants were considerably less virulent in the same model, even though wdchs3Δ strains also had previously shown no loss of virulence. This virulence attenuation in thewdchs2Δwdchs3Δ mutants was similarly documented in a limited fashion in more-sensitive cyclophosphamide-induced immunocompromised mice. The importance of WdChs2p and WdChs3p to the virulence of W. dermatitidis was then confirmed by reconstituting virulence in the double mutant by the reintroduction of either WdCHS2 or WdCHS3 into the wdchs2Δwdchs3Δ mutant background.


Eukaryotic Cell | 2007

Differential Regulation and Substrate Preferences in Two Peptide Transporters of Saccharomyces cerevisiae

Houjian Cai; Melinda Hauser; Fred Naider; Jeffrey M. Becker

ABSTRACT Dal5p has been shown previously to act as an allantoate/ureidosuccinate permease and to play a role in the utilization of certain dipeptides as a nitrogen source in Saccharomyces cerevisiae. Here, we provide direct evidence that dipeptides are transported by Dal5p, although the affinity of Dal5p for allantoate and ureidosuccinate is higher than that for dipeptides. Allantoate, ureidosuccinate, and to a lesser extent allantoin competed with dipeptide transport by reducing the toxicity of the peptide Ala-Eth and decreasing the accumulation of [14C]Gly-Leu. In contrast to the well-studied di/tripeptide transporter Ptr2p, whose substrate specificity is very broad, Dal5p preferred to transport non-N-end rule dipeptides. S. cerevisiae W303 was sensitive to the toxic peptide Ala-Eth (non-N-end rule peptide) but not Leu-Eth (N-end rule peptide). Non-N-end rule dipeptides showed better competition with the uptake of [14C]Gly-Leu than N-end rule dipeptides. Similar to the regulation of PTR2, DAL5 expression was influenced by the addition of Leu and by the CUP9 gene. However, DAL5 expression was downregulated in the presence of leucine and the absence of CUP9, whereas PTR2 was upregulated. Toxic dipeptide and uptake assays indicated that either Ptr2p or Dal5p was predominantly used for dipeptide transport in the common laboratory strains S288c and W303, respectively. These studies highlight the complementary activities of two dipeptide transport systems under different regulatory controls in common laboratory yeast strains, suggesting that dipeptide transport pathways evolved to respond to different environmental conditions.


Journal of Biological Chemistry | 2007

The first extracellular loop of the Saccharomyces cerevisiae GPCR STE2P undergoes a conformational change upon ligand binding

Melinda Hauser; Sarah Kauffman; Byung-Kwon Lee; Fred Naider; Jeffrey M. Becker

In this study of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p, we present data indicating that the first extracellular loop (EL1) of the α-factor receptor has tertiary structure that limits solvent accessibility and that its conformation changes in a ligand-dependent manner. The substituted cysteine accessibility method was used to probe the solvent exposure of single cysteine residues engineered to replace residues Tyr101 through Gln135 of EL1 in the presence and absence of the tridecapeptide α-factor and a receptor antagonist. Surprisingly, many residues, especially those at the N-terminal region, were not solvent-accessible, including residues of the binding-competent yet signal transduction-deficient mutants L102C, N105C, S108C, Y111C, and T114C. In striking contrast, two N-terminal residues, Y101C and Y106C, were readily solvent-accessible, but upon incubation with α-factor labeling was reduced, suggesting a pheromone-dependent conformational change limiting solvent accessibility had occurred. Labeling in the presence of the antagonist, which binds Ste2p but does not initiate signal transduction, did not significantly alter reactivity with the Y101C and Y106C receptors, suggesting that the α-factor-dependent decrease in solvent accessibility was not because of steric hindrance that prevented the labeling reagent access to these residues. Based on these and previous observations, we propose a model in which the N terminus of EL1 is structured such that parts of the loop are buried in a solvent-inaccessible environment interacting with the extracellular part of the transmembrane domain bundle. This study highlights the essential role of an extracellular loop in activation of a G protein-coupled receptor upon ligand binding.


Microbiology | 1997

The topoisomerase I gene from Candida albicans

Weidong Jiang; David Gerhold; Eric B. Kmiec; Melinda Hauser; Jeffrey M. Becker; Y. Koltin

We report here the cloning of the Candida albicans genomic topoisomerase I gene (TOP1) by use of PCR and subsequent hybridization. The predicted protein sequence shared 58.8% identity with the Saccharomyces cerevisiae topoisomerase I and 30-50% identity with other eukaryotic topoisomerase I proteins. A conditional gene disruption strain (CWJ477) was constructed so that one copy of TOP1 was deleted and the other copy of TOP1 was placed under a regulatable promoter. Under repressed conditions, cells grew slowly and cell morphology was abnormal. The virulence of CWJ477 was markedly reduced in a mouse model system, and that of the single gene knockout-strain was slightly attenuated, indicating that TOP1 might play a role in the infection of C. albicans in mice in a dose-dependent manner. Despite the reduced virulence of both the single and double knockout strains, viable cells of the pathogen were recovered from the kidneys as late as 22 d post-infection.


Molecular Membrane Biology | 2005

Substrate preference is altered by mutations in the fifth transmembrane domain of Ptr2p, the di/tri-peptide transporter of Saccharomyces cerevisiae

Melinda Hauser; Sarah Kauffman; Fred Naider; Jeffrey M. Becker

The integral membrane protein Ptr2p transports di/tri-peptides into the yeast Saccharomyces cerevisiae. The sequence FYXXINXG (FYING motif) in the 5th transmembrane domain (TM5) is invariably conserved among the members of the PTR (Peptide TRansport) family ranging from yeast to human. To test the role of TM5 in Ptr2p function, Ala-scanning mutagenesis of the 22 residues comprising TM5 was completed. All mutated transporters, with the exception of the Y248A mutant, were expressed as determined by immunoblots. In peptide-dependent growth assays, ten mutants of the non-FYING residues grew as well as wild-type Ptr2p on all twelve different peptides tested. All of the FYING motif mutants, except the non-expressed Y248A, plus seven other mutants in TM5 exhibited differential growth on peptides including Leu-Leu and Met-Met-Met indicating that these mutations conferred substrate preference. In assays measuring direct uptake of the radioactive peptides 3H-Leu-Leu or 14C-Met-Met-Met, the F, I and G mutants of the FYING motif did not demonstrate accumulation of these peptides over a ten minute interval. The mutation N252A of the FYING motif, along with L240A, M250A, and L258A, exhibited differential substrate preference for Met-Met-Met over Leu-Leu. Other mutations (T239A, Q241A, N242A, M245A, and A260) resulted in preference for Leu-Leu over Met-Met-Met. These data demonstrate that TM5, in particular its conserved FYING motif, is involved in substrate preference of Ptr2p.

Collaboration


Dive into the Melinda Hauser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Naider

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Arshava

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cagdas D. Son

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge