Rajat Rohatgi
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rajat Rohatgi.
Cell | 1999
Rajat Rohatgi; Le Ma; Hiroaki Miki; Marco Lopez; Tomas Kirchhausen; Tadaomi Takenawa; Marc W. Kirschner
Although small GTP-binding proteins of the Rho family have been implicated in signaling to the actin cytoskeleton, the exact nature of the linkage has remained obscure. We describe a novel mechanism that links one Rho family member, Cdc42, to actin polymerization. N-WASP, a ubiquitously expressed Cdc42-interacting protein, is required for Cdc42-stimulated actin polymerization in Xenopus egg extracts. The C terminus of N-WASP binds to the Arp2/3 complex and dramatically stimulates its ability to nucleate actin polymerization. Although full-length N-WASP is less effective, its activity can be greatly enhanced by Cdc42 and phosphatidylinositol (4,5) bisphosphate. Therefore, N-WASP and the Arp2/3 complex comprise a core mechanism that directly connects signal transduction pathways to the stimulation of actin polymerization.
Nature | 2002
Sharon Eden; Rajat Rohatgi; Alexandre V. Podtelejnikov; Matthias Mann; Marc W. Kirschner
Rac signalling to actin—a pathway that is thought to be mediated by the protein Scar/WAVE (WASP (Wiskott–Aldrich syndrome protein)-family verprolin homologous protein)—has a principal role in cell motility. In an analogous pathway, direct interaction of Cdc42 with the related protein N-WASP stimulates actin polymerization. For the Rac–WAVE pathway, no such direct interaction has been identified. Here we report a mechanism by which Rac and the adapter protein Nck activate actin nucleation through WAVE1. WAVE1 exists in a heterotetrameric complex that includes orthologues of human PIR121 (p53-inducible messenger RNA with a relative molecular mass (Mr) of 140,000), Nap125 (NCK-associated protein with an Mr of 125,000) and HSPC300. Whereas recombinant WAVE1 is constitutively active, the WAVE1 complex is inactive. We therefore propose that Rac1 and Nck cause dissociation of the WAVE1 complex, which releases active WAVE1–HSPC300 and leads to actin nucleation.
Cell | 2004
Hsin Yi Henry Ho; Rajat Rohatgi; Andres M. Lebensohn; Le Ma; Jiaxu Li; Steven P. Gygi; Marc W. Kirschner
An important signaling pathway to the actin cytoskeleton links the Rho family GTPase Cdc42 to the actin-nucleating Arp2/3 complex through N-WASP. Nevertheless, these previously identified components are not sufficient to mediate Cdc42-induced actin polymerization in a physiological context. In this paper, we describe the biochemical purification of Toca-1 (transducer of Cdc42-dependent actin assembly) as an essential component of the Cdc42 pathway. Toca-1 binds both N-WASP and Cdc42 and is a member of the evolutionarily conserved PCH protein family. Toca-1 promotes actin nucleation by activating the N-WASP-WIP/CR16 complex, the predominant form of N-WASP in cells. Thus, the cooperative actions of two distinct Cdc42 effectors, the N-WASP-WIP complex and Toca-1, are required for Cdc42-induced actin assembly. These findings represent a significantly revised view of Cdc42-signaling and shed light on the pathogenesis of Wiskott-Aldrich syndrome.
Genes & Development | 2010
Eric W. Humke; Karolin V. Dorn; Ljiljana Milenkovic; Matthew P. Scott; Rajat Rohatgi
The transcriptional program orchestrated by Hedgehog signaling depends on the Gli family of transcription factors. Gli proteins can be converted to either transcriptional activators or truncated transcriptional repressors. We show that the interaction between Gli3 and Suppressor of Fused (Sufu) regulates the formation of either repressor or activator forms of Gli3. In the absence of signaling, Sufu restrains Gli3 in the cytoplasm, promoting its processing into a repressor. Initiation of signaling triggers the dissociation of Sufu from Gli3. This event prevents formation of the repressor and instead allows Gli3 to enter the nucleus, where it is converted into a labile, differentially phosphorylated transcriptional activator. This key dissociation event depends on Kif3a, a kinesin motor required for the function of primary cilia. We propose that the Sufu-Gli3 interaction is a major control point in the Hedgehog pathway, a pathway that plays important roles in both development and cancer.
Nature Cell Biology | 2001
Narcisa Martinez-Quiles; Rajat Rohatgi; Inés M. Antón; Miguel Medina; Stephen P. Saville; Hiroaki Miki; Hideki Yamaguchi; Tadaomi Takenawa; John H. Hartwig; Raif S. Geha; Narayanaswamy Ramesh
Induction of filopodia is dependent on activation of the small GTPase Cdc42 and on neural Wiskott–Aldrich-syndrome protein (N-WASP). Here we show that WASP-interacting protein (WIP) interacts directly with N-WASP and actin. WIP retards N-WASP/Cdc42-activated actin polymerization mediated by the Arp2/3 complex, and stabilizes actin filaments. Microinjection of WIP into NIH 3T3 fibroblasts induces filopodia; this is inhibited by microinjection of anti-N-WASP antibody. Microinjection of anti-WIP antibody inhibits induction of filopodia by bradykinin, by an active Cdc42 mutant (Cdc42(V12)) and by N-WASP. Our results indicate that WIP and N-WASP may act as a functional unit in filopodium formation, which is consistent with their role in actin-tail formation in cells infected with vaccinia virus or Shigella.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Rajat Rohatgi; Ljiljana Milenkovic; Ryan B. Corcoran; Matthew P. Scott
The Hedgehog (Hh) signaling pathway controls growth, cell fate decisions, and morphogenesis during development. Damage to Hh transduction machinery can lead to birth defects and cancer. The transmembrane protein Smoothened (Smo) relays the Hh signal and is an important drug target in cancer. Smo enrichment in primary cilia is thought to drive activation of target genes. Using small-molecule agonists and antagonists to dissect Smo function, we find that Smo enrichment in cilia is not sufficient for signaling and a distinct second step is required for full activation. This 2-step mechanism—localization followed by activation—has direct implications for the design and use of anticancer therapeutics targeted against Smo.
Journal of Cell Biology | 2009
Ljiljana Milenkovic; Matthew P. Scott; Rajat Rohatgi
A distinct pathway for ligand-stimulated lateral trafficking of the hedgehog protein Smoothened into cilia is described.
Nature Chemical Biology | 2012
Sigrid Nachtergaele; Laurel K Mydock; Kathiresan Krishnan; Paul H. Schlesinger; Douglas F. Covey; Rajat Rohatgi
Oxysterols are a class of endogenous signaling molecules that can activate the Hedgehog pathway, which plays critical roles in development, regeneration and cancer. However, it has been unclear how oxysterols influence Hedgehog signaling, including whether their effects are mediated through a protein target or indirectly through effects on membrane properties. To answer this question, we synthesized the enantiomer and an epimer of the most potent oxysterol, 20(S)-hydroxycholesterol. Using these molecules, we show that the effects of oxysterols on Hedgehog signaling are exquisitely stereoselective, consistent with their function through a specific protein target. We present several lines of evidence that this protein target is the 7-pass transmembrane protein Smoothened, a major drug target in oncology. Our work suggests that these enigmatic sterols, which have multiple effects on cell physiology, may act as ligands for signaling receptors and provides a generally applicable framework for probing their mechanism of action.
Nature Cell Biology | 2007
Rajat Rohatgi; Matthew P. Scott
The Hedgehog (Hh) pathway plays central roles in animal development and stem-cell function. Defects in Hh signalling lead to birth defects and cancer in humans. The first and often genetically damaged step in this pathway is the interaction between two membrane proteins - Patched (Ptc), encoded by a tumour suppressor gene, and Smoothened (Smo), encoded by a proto-oncogene. Recent work linking Hh signalling to sterol metabolites and protein-trafficking events at the primary cilium promises to shed light on the biochemical basis of how Patched inhibits Smoothened, and to provide new avenues for cancer treatment.
The Journal of Neuroscience | 2004
David A. Feldheim; Masaru Nakamoto; Miriam Osterfield; Nicholas W. Gale; Thomas M. DeChiara; Rajat Rohatgi; George D. Yancopoulos; John G. Flanagan
EphA tyrosine kinases are thought to act as topographically specific receptors in the well-characterized projection map from the retina to the tectum. Here, we describe a loss-of-function analysis of EphA receptors in retinotectal mapping. Expressing patches of a cytoplasmically truncated EphA3 receptor in chick retina caused temporal axons to have reduced responsiveness to posterior tectal repellent activity in vitro and to shift more posteriorly within the map in vivo. A gene disruption of mouse EphA5, replacing the intracellular domain with β-galactosidase, reduced in vitro responsiveness of temporal axons to posterior target membranes. It also caused map abnormalities in vivo, with temporal axons shifted posteriorly and nasal axons anteriorly, but with the entire target still filled by retinal axons. The anterior shift of nasal axons was not accompanied by increased responsiveness to tectal repellent activity, in contrast to the comparable anterior shift in ephrin-A knock-outs, helping to resolve a previous ambiguity in interpreting the ephrin gene knock-outs. The results show the functional requirement for endogenous EphA receptors in retinotectal mapping, show that the receptor intracellular domain is required for a forward signaling response to topographic cues, and provide new evidence for a role of axon competition in topographic mapping.