Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cameron J. Koch is active.

Publication


Featured researches published by Cameron J. Koch.


International Journal of Radiation Biology | 2006

Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy.

Jeffrey M. Arbeit; J. Martin Brown; K.S. Clifford Chao; J. Donald Chapman; William C. Eckelman; Anthony Fyles; Amato J. Giaccia; Richard P. Hill; Cameron J. Koch; Murali C. Krishna; Kenneth A. Krohn; Jason S. Lewis; Ralph P. Mason; Giovanni Melillo; Anwar R. Padhani; Garth Powis; Joseph G. Rajendran; Richard Reba; Simon P. Robinson; Gregg L. Semenza; Harold M. Swartz; Peter Vaupel; David J. Yang; James L. Tatum

PURPOSE The Cancer Imaging Program of the National Cancer Institute convened a workshop to assess the current status of hypoxia imaging, to assess what is known about the biology of hypoxia as it relates to cancer and cancer therapy, and to define clinical scenarios in which in vivo hypoxia imaging could prove valuable. RESULTS Hypoxia, or low oxygenation, has emerged as an important factor in tumor biology and response to cancer treatment. It has been correlated with angiogenesis, tumor aggressiveness, local recurrence, and metastasis, and it appears to be a prognostic factor for several cancers, including those of the cervix, head and neck, prostate, pancreas, and brain. The relationship between tumor oxygenation and response to radiation therapy has been well established, but hypoxia also affects and is affected by some chemotherapeutic agents. Although hypoxia is an important aspect of tumor physiology and response to treatment, the lack of simple and efficient methods to measure and image oxygenation hampers further understanding and limits their prognostic usefulness. There is no gold standard for measuring hypoxia; Eppendorf measurement of pO(2) has been used, but this method is invasive. Recent studies have focused on molecular markers of hypoxia, such as hypoxia inducible factor 1 (HIF-1) and carbonic anhydrase isozyme IX (CA-IX), and on developing noninvasive imaging techniques. CONCLUSIONS This workshop yielded recommendations on using hypoxia measurement to identify patients who would respond best to radiation therapy, which would improve treatment planning. This represents a narrow focus, as hypoxia measurement might also prove useful in drug development and in increasing our understanding of tumor biology.


Journal of Clinical Investigation | 1997

Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53.

Shani Bialik; David L. Geenen; Isaac E. Sasson; Rendi Cheng; James W. Horner; Sydney M. Evans; Edith M. Lord; Cameron J. Koch; Richard N. Kitsis

Significant numbers of myocytes die by apoptosis during myocardial infarction. The molecular mechanism of this process, however, remains largely unexplored. To facilitate a molecular genetic analysis, we have developed a model of ischemia-induced cardiac myocyte apoptosis in the mouse. Surgical occlusion of the left coronary artery results in apoptosis, as indicated by the presence of nucleosome ladders and in situ DNA strand breaks. Apoptosis occurs mainly in cardiac myocytes, and is shown for the first time to be limited to hypoxic regions during acute infarction. Since hypoxia-induced apoptosis in other cell types is dependent on p53, and p53 is induced by hypoxia in cardiac myocytes, we investigated the necessity of p53 for myocyte apoptosis during myocardial infarction. Myocyte apoptosis occurs as readily, however, in the hearts of mice nullizygous for p53 as in wild-type littermates. These data demonstrate the existence of a p53-independent pathway that mediates myocyte apoptosis during myocardial infarction.


Cellular Microbiology | 2006

Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension

Ming C. Tsai; Soumya D. Chakravarty; Guofeng Zhu; Jiayong Xu; Kathryn Tanaka; Cameron J. Koch; JoAnn Tufariello; JoAnne Flynn; John Chan

The granulomatous reaction is the hallmark of the host response to infection with Mycobacterium tuberculosis. Despite its apparent importance to host defence against the tubercle bacillus, the granulomatous response remains to be completely defined. The present study used histological, immunohistochemical and flow‐cytometric analyses to characterize pulmonic granulomatous tissues of tuberculous mice and humans. The kinetics of recruitment of neutrophils, macrophages, dendritic cells, and T and B lymphocytes into the lungs of mice infected aerogenically with the virulent Erdman strain of M. tuberculosis was evaluated in detail in both the acute and persistent phase of infection. A hypoxia‐sensing compound based on the 2‐nitroimidazole structure (EF5), together with immunohistochemical studies targeting endothelial cells were used to examine the relative oxygen tension in tuberculous granulomatous tissues in mice. The results have provided evidence that: (i) the granulomatous tissues are a highly organized structure whose formation is regulated by orderly recruitment of specific immune cells exhibiting distinct spatial relationship with one another; (ii) the granulomatous reaction, at least in the mouse, may represent an exaggerated response to the tubercle bacillus that can play a role in the development of immunopathology; (iii) B lymphoid aggregates are a prominent feature in both murine and human granulomatous tissues, although the immune cells that are most prominently associated with these clusters vary among the two species; (iv) murine tuberculous granulomatous tissues are relatively aerobic, suggesting that mouse models of persistent tuberculosis may not be suitable for the study of any hypoxic response of M. tuberculosis.


Clinical Cancer Research | 2004

Hypoxia is important in the biology and aggression of human glial brain tumors.

Sydney M. Evans; Kevin Judy; Isolde Dunphy; W. Timothy Jenkins; Wei-Ting Hwang; Peter T. Nelson; Robert A. Lustig; Kevin Jenkins; Deirdre P. Magarelli; Stephen M. Hahn; Ruth Collins; M. Sean Grady; Cameron J. Koch

We investigated whether increasing levels of tissue hypoxia, measured by the binding of EF5 [2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide] or by Eppendorf needle electrodes, were associated with tumor aggressiveness in patients with previously untreated glial brain tumors. We hypothesized that more extensive and severe hypoxia would be present in tumor cells from patients bearing more clinically aggressive tumors. Hypoxia was measured with the 2-nitroimidazole imaging agent EF5 in 18 patients with supratentorial glial neoplasms. In 12 patients, needle electrode measurements were made intraoperatively. Time to recurrence was used as an indicator of tumor aggression and was analyzed as a function of EF5 binding, electrode values and recursive partitioning analysis (RPA) classification. On the basis of EF5 binding, WHO grade 2 tumors were characterized by modest cellular hypoxia (pO2s ≈ 10%) and grade 3 tumors by modest-to-moderate hypoxia (pO2s ≈ 10%- 2.5%). Severe hypoxia (≈0.1% oxygen) was present in 5 of 12 grade 4 tumors. A correlation between more rapid tumor recurrence and hypoxia was demonstrated with EF5 binding, but this relationship was not predicted by Eppendorf measurements.


Cancer Letters | 2003

Prognostic significance of tumor oxygenation in humans

Sydney M. Evans; Cameron J. Koch

Low tissue oxygen concentration has been shown to be important in the response of human tumors to radiation therapy, chemotherapy and other treatment modalities. Hypoxia is also known to be a prognostic indicator, as hypoxic human tumors are more biologically aggressive and are more likely to recur locally and metastasize. Herein, we discuss and summarize the various methods under investigation to directly or indirectly measure tissue oxygen in vivo. Secondly, we consider the advantages and disadvantages of each of these techniques. These considerations are made in light of our specific hypotheses that hypoxia should be measured as a continuum, not a binary measurement and that moderate, not severe hypoxia is of great biological consequence.


Journal of Cellular Physiology | 1996

Adaptation of chondrocytes to low oxygen tension: Relationship between hypoxia and cellular metabolism

Ramesh Rajpurohit; Cameron J. Koch; Zhuliang Tao; Cristina Maria Teixeira; Irving M. Shapiro

In endochondral bone, the growth cartilage is the site of rapid growth. Since the vascular supply to the cartilage is limited, it is widely assumed that cells of the cartilage are hypoxic and that limitations in the oxygen supply regulate the energetic state of the maturing cells. In this report, we evaluate the effects of oxygen tension on chondrocyte energy metabolism, thiol status, and expression of transcription elements, HIF and AP‐1. Imposition of an hypoxic environment on cultured chondrocytes caused a proportional increase in glucose utilization and elevated levels of lactate synthesis. Although we observed a statistical increase in the activities of phosphofructokinase, pyruvate kinase, lactate dehydrogenase, and creatine kinase after exposure to lowered oxygen concentrations, the effect was small. The cultured cells exhibited a decreased utilization of glutamine, possibly due to down regulation of mitochondrial function and inhibition of oxidative deamination. With respect to total energy generation, we noted that these cells are quite capable of maintaining the energy charge of the cell at low oxygen tensions. Indeed, no changes in the absolute quantity of adenine nucleotides or the energy charge ratio was observed. Hypoxia caused a decrease in the glutathione content of cultured chondrocytes and a concomitant rise in cell and medium cysteine levels. It is likely that the fall in cell glutathione level is due to decreased synthesis of the tripeptide under reduced oxygen stress and the limited supply of glutamate. The observed rise in cellular and medium cysteine levels probably reflects an increase in the rate of degradation of glutathione and a decrease in synthesis of the peptide. To explore how cells transduce these metabolic effects, gel retardation assays were used to study chondrocyte HIF and AP‐1 binding activities. Chondrocyte nuclear preparations bound an HIF‐oligonucleotide; however, at low oxygen tensions, no increase in HIF binding was observed. In addition, we found that AP‐1 binding activities in chondrocytes exposed to low oxygen tensions was elevated, although the response was lower than that exhibited by fibroblasts exposed to the same range of oxygen concentrations. We compared these results to HIF and AP‐1 binding by cells in the growth plate. There was strong HIF and AP‐1 binding throughout the plate, but no evidence of selective binding to any one zone. The results of the study lend strong support to the view that chondrocytes are very well adapted to low oxygen tensions; thus, under hypoxic conditions, there is a high level of expression of both HIF and AP‐1, and energy conservation appears to be near‐maximum.


British Journal of Cancer | 1995

Oxygen dependence of cellular uptake of EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)a cet amide]: analysis of drug adducts by fluorescent antibodies vs bound radioactivity

Cameron J. Koch; Sydney M. Evans; Edith M. Lord

The present studies were initiated to quantitate the oxygen dependence of bioreductive metabolism-induced binding of EF5, a pentafluorinated derivative of the 2-nitroimidazole, etanidazole. Two different assays were compared: first, radioactive drug incorporation into cell lysates, which provides a direct measure of drug metabolism or uptake; second, monoclonal antibody detection of cellular macromolecular adducts of EF5 after whole cell permeabilisation and fixing. The antibodies (a single clone designated ELK3-51) were conjugated with the fluorescent dye Cy3, with fluorescence determined by fluorescence microscopy and flow cytometry. For the two cell lines tested (V79 Chinese hamster fibroblasts and 9L rat glioma), the oxygen dependence of binding was found to be the same for the two techniques. Using the antibody binding technique, the fluorescence signal was highly reproducible between experiments, resistant to light or chemical bleaching and stable over time following cell or tissue staining. Flow cytometric analysis of cells from rat 9L tumours treated with EF5 in vivo or in vitro showed a distribution of fluorescent signal which was very compatible, on both a relative and absolute basis, with the in vitro results. Our results indicate that immunofluorescent techniques provide a quantitative assay for bioreductive drug adducts, and therefore may be able to measure the absolute oxygen concentration distribution in cell populations and tissues of interest.


Cancer Research | 2004

Comparative Measurements of Hypoxia in Human Brain Tumors Using Needle Electrodes and EF5 Binding

Sydney M. Evans; Kevin Judy; Isolde Dunphy; W. Timothy Jenkins; Peter T. Nelson; Ruth Collins; E. Paul Wileyto; Kevin Jenkins; Stephen M. Hahn; Craig W. Stevens; Alexander R. Judkins; Peter C. Phillips; Birgit Geoerger; Cameron J. Koch

Hypoxia is known to be an important prognostic marker in many human cancers. We report the use of two oxygen measurement techniques in human brain tumors and compare these data with semiquantitative histological end points. Oxygenation was measured using the Eppendorf needle electrode and/or EF5 binding in 28 brain tumors. These data were compared with necrosis, mitosis, and endothelial proliferation. In some tumors, absolute EF5 binding was converted to tissue pO2 based on in vitro calibrations. Eppendorf electrode readings could not be used to identify WHO grade 1/2 versus WHO grade 3/4 tumors, they could not differentiate grade 3 versus grade 4 glial-derived neoplasms, nor did they correlate with necrosis or endothelial proliferation scores. EF5 binding increased as the tumor grade increased and was significantly associated with necrosis and endothelial proliferation. There was no statistically significant correlation between the two hypoxia detection techniques, although both methods indicated similar absolute ranges of tissue pO2. There was substantial inter- and intratumoral heterogeneity of EF5 binding in WHO grade 4 glial neoplasms. The majority of cells in glial-derived tumor had levels of hypoxia that were mild to moderate (defined herein as 10% to 0.5% pO2) rather than severe (defined as approximately 0.1% pO2). Immunohistochemical detection of EF5 binding tracks histological parameters in adult brain tumors, with increased binding associated with increasing necrosis and endothelial proliferation. The proportion of moderately to severely hypoxic cells is relatively low, even in the high-grade tumors. Human brain tumors are dominated by oxic to moderately hypoxic cells.


Biophysical Journal | 1996

Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors

Sergei A. Vinogradov; Leu-Wei Lo; W. T. Jenkins; Sydney M. Evans; Cameron J. Koch; David F. Wilson

A newly developed water-soluble phosphor suitable for measuring oxygen pressure in the blood (Green 2W) was used for noninvasive, in vivo imaging of oxygen distribution in the vascular systems of mice. Oxygen quenches the phosphorescence of Green 2W, measured in the presence of 2% albumin, according to the Stern-volmer relationship. This oxygen-dependent quenching of phosphorescence has been used to obtain digital maps of the oxygen distribution in the tissue vasculature. EMT-6 mammary carcinoma tumors were grown by injecting 1 x 10(6) cells in 0.1-ml carrier into the subcutaneous space over the muscle on the hindquarter. When the tumors were approximately 8 mm in diameter, 300 micrograms of phosphorescence probe (Green 2W; absorption maximum 636 nm) was injected into the tail vein. The mice were immobilized with intraperotoneal Ketamine (133 mg/kg) and Xylazine (10 mg/kg) and illuminated with flashes (< 4-microseconds t1/2) of light of 630 +/- 12 nm. The emitted phosphorescence (790-nm maximum) was imaged an intensified CCD camera. Images were collected beginning at 30, 50, 80, 120, 180, 240, 420, and 2500 microseconds after the flash and used to calculate digital maps of the phosphorescence lifetimes and oxygen pressure. Both the illumination light and the phosphorescence were in the near-infrared region of the spectrum, where tissue has greatly decreased absorbance. The light therefore readily passed through the skin and centimeter thicknesses of tissue. The oxygen maps could be obtained by illuminating from the side of the mouse opposite the camera (and tumor). The tumors were readily observed as regions with oxygen pressures substantially below those of the surrounding tissue. Thus, phosphorescence measurements can noninvasively detect volumes of tissue with below-normal oxygen pressure in the presence of much larger volumes of tissue with normal oxygen pressures. In addition, tissue oxygen pressures can be monitored in real time, even through centimeter thicknesses of tissue.


Cell | 2008

Epidermal Sensing of Oxygen Is Essential for Systemic Hypoxic Response

Adam T. Boutin; Alexander Weidemann; Zhenxing Fu; Lernik Mesropian; Katarina Gradin; Colin Jamora; Michael S. Wiesener; Kai-Uwe Eckardt; Cameron J. Koch; Lesley G. Ellies; Gabriel G. Haddad; Volker H. Haase; M. Celeste Simon; Lorenz Poellinger; Frank L. Powell; Randall S. Johnson

Skin plays an essential role, mediated in part by its remarkable vascular plasticity, in adaptation to environmental stimuli. Certain vertebrates, such as amphibians, respond to hypoxia in part through the skin; but it is unknown whether this tissue can influence mammalian systemic adaptation to low oxygen levels. We have found that epidermal deletion of the hypoxia-responsive transcription factor HIF-1alpha inhibits renal erythropoietin (EPO) synthesis in response to hypoxia. Conversely, mice with an epidermal deletion of the von Hippel-Lindau (VHL) factor, a negative regulator of HIF, have increased EPO synthesis and polycythemia. We show that nitric oxide release induced by the HIF pathway acts on cutaneous vascular flow to increase systemic erythropoietin expression. These results demonstrate that in mice the skin is a critical mediator of systemic responses to environmental oxygen.

Collaboration


Dive into the Cameron J. Koch's collaboration.

Top Co-Authors

Avatar

Sydney M. Evans

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Edith M. Lord

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Stephen M. Hahn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Biaglow

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amit Maity

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Jenkins

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge