Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John E. Biaglow is active.

Publication


Featured researches published by John E. Biaglow.


Radiation Research | 1983

The role of thiols in cellular response to radiation and drugs.

John E. Biaglow; Marie E. Varnes; Edward P. Clark; Edward R. Epp

Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme A. GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Some nitroheterocyclic radiosensitizing drugs also deplete cellular thiols under aerobic conditions. Such reactivity may be the reason that they show anomalous radiation sensitization (i.e., better than predicted on the basis of electron affinity). Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole. In conclusion, we propose an altered thiol model which includes a mechanism for thiol involvement in the aerobic radiation response of cells. This mechanism involves both thiol-linked hydrogen donation to oxygen radical adducts to produce hydroperoxides followed by a GSH peroxidase-catalyzed reduction of the hydroperoxides to intermediates entering into metabolic pathways to produce the original molecule.


Cancer Biology & Therapy | 2005

The thioredoxin reductase/thioredoxin system: Novel redox targets for cancer therapy

John E. Biaglow; Richard A. Miller

Thioredoxin reductase (TRX) is a selenoprotein that reduces oxidized protein substrates in an NADPH-dependent process (cf. Fig. 1). The thioredoxins (TX) are a family of small redox active proteins that undergo reversible oxidation/reduction and help to maintain the redox state of cells. TX serves as a cofactor in many TRX-catalyzed reductions in a manner similar to glutathione (GSH) in thioltransferase reactions. For example, TX is a cofactor in protein disulfide reduction and DNA synthesis, but independently, it inhibits apoptosis, stimulates cell proliferation and angiogenesis, and increases transcription factor activity. The role of the TRX/TX system is limited by its reducing capacity as well as the additional supply of electrons in the form of NADPH provided by hexose monophosphate shunt (HMPS). TX is limited by the reduction capacity of its vicinal sulfhydryls and needs a source of electrons from the HMPS and TRXcoupled system to reduce disulfides. Oxidized TX is reduced by TRX and NADPH. Several lines of evidence suggest that the coupled HMPS/TRX/TX system represents an important target for cancer therapy. TX overexpression has been reported in several malignancies and may be associated with aggressive tumor growth and poor survival. In some cells, TX is an important factor in conferring resistance to chemotherapy and in stimulating production of hypoxiainducible factor (HIF-1). Several inhibitors of the TRX/TX system have been evaluated in experimental cancer models: these include HMPS inhibitors, carbohydrate analogues, NADP synthesis blockers, vicinal thiol reactants, cisplatin, and TRX inhibitors. More recently, the targeted anti-cancer agent motexafin gadolinium has been identified. Motexafin gadolinium is a redox mediator that selectively localizes to cancer cells, and reacts with reducing metabolites and vicinal thiols to generate reactive oxygen species that ultimately block the TRX enzyme as well as the analogous glutaredoxin activity. In cell and animal models, motexafin gadolinium is directly cytotoxic to various tumor cells and enhances the activity of radiation therapy and chemotherapy. This drug is now in a broad range of clinical trials investigating its therapeutic potential when used as a single agent or in combination with either chemotherapy or radiation therapy. Promising clinical activity has been reported in a clinical trial with motexafin gadolinium and whole brain radiation therapy for treatment of brain metastases from solid tumors. These findings suggest that the TRX/TX system may represent an attractive target for development of new cancer therapeutics.


International Journal of Radiation Oncology Biology Physics | 1990

The role of the H-ras oncogene in radiation resistance and metastasis

W. Gillies McKenna; Marisa C. Weiss; Vincent J. Bakanauskas; Howard M. Sandler; Martin L. Kelsten; John E. Biaglow; Stephen W. Tuttle; Brian Endlich; C. Clifton Ling; Ruth J. Muschel

The sensitivity of tumor cells to the killing effects of ionizing radiation is thought to be one of the major determinants of curability of tumors in patients treated with radiation therapy. This paper reviews the evidence from our laboratory and other groups which supports a role for oncogenes in the induction of radioresistance in cultured mammalian cells. Primary rat embryo cells (REC) were chosen as a model system in which the effects on radiation resistance of the H-ras oncogene could be studied on a uniform genetic background. These cells offered several useful advantages. The cells prior to transformation are diploid and because they have been in culture only for a few passages prior to transformation with the oncogene it is unlikely that any preexisting mutation affecting radiation response could be present. Additionally, the use of REC permitted the study of the effects of synergism between oncogenes on the induction of the radioresistant phenotype. The results show that the activated H-ras oncogene induces radiation resistance in primary rat cells after transformation, but that the effect of the oncogene itself is small. However, the myc oncogene, which has no effect on radiation resistance by itself, appears to have a synergistic effect on the induction of radiation resistance by H-ras. Radiation resistance induced by H-ras plus myc is characterized by an increase in the slope of the curve at high doses but there is also a large effect within the shoulder region of the radiation survival curve. The AdenoE1A oncogene which will also act synergistically with ras in transformation assays plays a less clear-cut role in assays of radiation resistance. The H-ras oncogene is also known not only to transform cells but also to induce metastatic behavior in the tumors which form after these transformed cells are injected into syngeneic animals or nude mice. We have also shown in our primary rat embryo cell system that the induction of metastatic behavior in transformed cells, like the induction of radioresistance depends on a complex interaction between oncogenes and the cellular background. This evidence will be reviewed to demonstrate some of the analogies between radiation resistance and metastasis as examples of the complex alterations in cellular phenotype which occur after oncogene transfection.(ABSTRACT TRUNCATED AT 400 WORDS)


Radiation Research | 1983

Cellular glutathione depletion by diethyl maleate or buthionine sulfoximine: no effect of glutathione depletion on the oxygen enhancement ratio

James B. Mitchell; Angelo Russo; John E. Biaglow; Scott McPherson

The hypoxic and euoxic radiation response for Chinese hamster lung and A549 human lung carcinoma cells was obtained under conditions where their nonprotein thiols, consisting primarily of glutathione (GSH), were depleted by different mechanisms. The GSH conjugating reagent diethylmaleate (DEM) was compared to DL-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutathionine biosynthesis. Each reagent depleted cellular GSH to less than 5% of control values. A 2-hr exposure to 0.5 mM DEM or a 4- or 24-hr exposure to BSO at 10 or 1 mM, respectively, depleted cellular GSH to less than 5% of control values. Both agents sensitized cells irradiated under air or hypoxic conditions. When GSH levels are lowered to less than 5% by both agents, hypoxic DEM-treated cells exhibited slightly greater X-ray sensitization than hypoxic BSO-treated cells. The D0s for hypoxic survival curves were as follows: control, 4.87 Gy; DEM, 3.22 Gy; and BSO, 4.30 Gy for the V79 cells and 5.00 Gy versus 4.02 Gy for BSO-treated A549 cells. The D0s for aerobic V79 cells were 1.70 Gy versus 1.13 Gy, DEM, and 1.43 Gy for BSO-treated cells. The D0s for the aerobic A549 were 1.70 and 1.20 for BSO-treated cells. The aerobic and anoxic sensitization of the cells results in the OERs of 2.8 and 3.0 for the DEM- and BSO-treated cells compared to 2.9 for the V79 control A549. BSO-treated cells showed an OER of 3.3 versus 3 for the control. Our results suggest that GSH depletion by either BSO or DEM sensitizes aerobic cells to radiation but does not appreciably alter the OER.


Free Radical Biology and Medicine | 1997

The importance of sodium pyruvate in assessing damage produced by hydrogen peroxide.

Albert R. Giandomenico; George E Cerniglia; John E. Biaglow; Craig W. Stevens; Cameron J. Koch

Instability of hydrogen peroxide solutions was noted during the experimental exposure of human cells in culture to hydrogen peroxide in experiments designed to study the production and repair of DNA single-strand breaks. A hydrogen peroxide concentrate was diluted into culture medium, which was then added to experimental cell cultures at various times, with all cultures assessed for DNA damage at 2 h. Only cells treated by the first addition had observable DNA damage. This result was unexpected since these cells had had the maximum repair time. It was determined that the hydrogen peroxide had been eliminated by the culture medium. To determine the mechanism of this elimination, 200 microM hydrogen peroxide was added to various cell culture components, and the solutions were assayed for hydrogen peroxide after 1 h at 37 degrees C. Although most components (except the balanced salts) showed some hydrogen peroxide degradation, it was found that sodium pyruvate was most effective, by a wide margin, in eliminating hydrogen peroxide and its toxic effects. This was confirmed by addition of pyruvate to balanced salt solutions or buffers, and observing the same elimination of hydrogen peroxide. We subsequently found a few earlier reports describing the decarboxylation reaction between hydrogen peroxide and pyruvate, but no kinetic measurements have been published and there seems to be no general appreciation for the very high efficiency of this reaction. The present work presents a preliminary assessment of the importance of pyruvate in the study of hydrogen peroxide and other reactive oxygen species in mammalian cell culture.


Free Radical Research | 1998

Mechanism of Copper-Catalyzed Oxidation of Glutathione

Alexander V. Kachur; Cameron J. Koch; John E. Biaglow

The mechanism of copper-catalyzed glutathione oxidation was investigated using oxygen consumption, thiol depletion, spectroscopy and hydroxyl radical detection. The mechanism of oxidation has kinetics which appear biphasic. During the first reaction phase a stoichiometric amount of oxygen is consumed (1 mole oxygen per 4 moles thiol) with minimal .OH production. In the second reaction phase, additional (excess) oxygen is consumed at an increased rate and with significant hydrogen peroxide and .OH production. The kinetic and spectroscopic data suggest that copper forms a catalytic complex with glutathione (1 mole copper per 2 moles glutathione). Our proposed reaction mechanism assumes two parallel processes (superoxide-dependent and peroxide-dependent) for the first reaction phase and superoxide-independent for the second phase. Our current results indicate that glutathione, usually considered as an antioxidant, can act as prooxidant at physiological conditions and therefore can participate in cellular radical damage.


Radiation Research | 1997

Coumarin-3-Carboxylic Acid as a Detector for Hydroxyl Radicals Generated Chemically and by Gamma Radiation

Yefim Manevich; Kathryn D. Held; John E. Biaglow

Coumarin-3-carboxylic acid (3-CCA) was used as a detector for hydroxyl radicals (.OH) in aqueous solution. The .OH was generated by gamma irradiation or chemically by the Cu2+-mediated oxidation of ascorbic acid (ASC). The excitation and emission spectra of 3-CCA, hydroxylated either chemically or by gamma irradiation, were nearly identical to those of an authentic 7-hydroxycoumarin-3-carboxylic acid (7-OHCCA). The pH-titration curves for the fluorescence at 450 nm (excitation at 395 nm) of 3-CCA, hydroxylated either chemically or by gamma radiation, were also identical to those of authentic 7-OHCCA (pK = 7.4). Time-resolved measurements of the fluorescence decays of radiation- or chemically hydroxylated 3-CCA, as well as those of 7-OHCCA, indicate a monoexponential fit. The fluorescence lifetime for the product of 3-CCA hydroxylation was identical to that of 7-OHCCA (approximately 4 ns). These data, together with analysis of end products by high-performance liquid chromatography, show that the major fluorescent product formed by radiation-induced or chemical hydroxylation of 3-CCA is 7-OHCCA. Fluorescence detection of 3-CCA hydroxylation allows real-time measurement of the kinetics of .OH generation. The kinetics of 3-CCA hydroxylation by gamma radiation is linear, although the kinetics of 3-CCA hydroxylation by the Cu2+-ASC reaction shows a sigmoid shape. The initial (slow) step of 3-CCA hydroxylation is sensitive to Cu2+, but the steeper (fast) step is sensitive to ASC. Analysis of the kinetics of 3-CCA hydroxylation shows a diffusion-controlled reaction with a rate constant 5.0 +/- 1.0 x 10(9) M(-1) s(-1). The scavenging of .OH by 3-CCA was approximately 14% for chemical generation with Cu2+-ASC and approximately 50% for gamma-radiation-produced .OH. The yield of 7-OHCCA under the same radiation conditions was approximately 4.4% and increased linearly with radiation dose. The 3-CCA method of detection of .OH is quantitative, sensitive, specific and therefore accurate. It has an excellent potential for use in biological systems.


Biochemical Pharmacology | 1986

Biochemistry of reduction of nitro heterocycles.

John E. Biaglow; Marie E. Varnes; Laurie Roizen-Towle; Edward P. Clark; Edward R. Epp; Myles Astor; Eric J. Hall

Misonidazole is a metabolically active drug. Its addition to cells causes an immediate alteration in cellular electron transfer pathways. Under aerobic conditions the metabolic alterations can result in futile cycling with electron transfer to oxygen and production of peroxide. Thiol levels are extremely important in protecting the cell against the peroxide formation and potentially hazardous conditions for hydroxyl radical production. Nevertheless such electron shunting out of cellular metabolism will result in alterations in pentose cycle, glycolysis and cellular capacity to reduce metabolites to essential intermediates needed in DNA metabolism (i.e. deoxyribonucleotides). Glutathione must be depleted to very low levels before toxic effects of misonidazole and other nitro compounds are manifested in cell death via peroxidative damage. Under hypoxic conditions misonidazole also diverts the pentose cycle via its own reduction; however, unlike the aerobic conditions, there are a number of reductive intermediates produced that react with non-protein thiols such as GSH as well as protein thiols. The reaction with protein thiols results in the inhibition of glycolysis and other as yet undetermined enzyme systems. The consequences of the hypoxic pretreatment of cells with nitro compounds are increased vulnerability to radiation and chemotherapeutic drugs such as L-PAM, cis-platinum and bleomycin. The role that altered enzyme activity has in the cellular response to misonidazole and chemotherapeutic agents remains to be determined. It is also clear that the GSH depleted state not only makes cells more vulnerable to oxidative stress but also to hypoxic intermediates produced by the reduction of misonidazole beyond the one electron stage. The relevancy of the present work to the proposed use of thiol depletion in vivo to enhance the radiation or chemotherapeutic response of tumor tissue lies with the following considerations. Apparently, spontaneous peroxidative damage to normal tissue such as liver can occur with GSH depletion to 10-20% of control and with other normal tissue when GSH reaches 50% of control. This situation can obviously become more critical if peroxide producing drugs are administered. The only advantage to such combined drug treatments would lie in the possibility that tumors vary in their catalase and peroxidase activity and consequently may be more vulnerable to oxidative stress (cf. review by Meister. Our tumor model, the A549 human lung carcinoma cell in vitro, appears to be an exception because it has catalase, peroxidase and a high content of GSH.(ABSTRACT TRUNCATED AT 400 WORDS)


International Journal of Radiation Oncology Biology Physics | 2001

REDOX CYCLING BY MOTEXAFIN GADOLINIUM ENHANCES CELLULAR RESPONSE TO IONIZING RADIATION BY FORMING REACTIVE OXYGEN SPECIES

Darren Magda; Cheryl Lepp; Nikolay Gerasimchuk; Intae Lee; Jonathan L. Sessler; Alice Lin; John E. Biaglow; Richard A. Miller

PURPOSE To examine the mechanism of radiation enhancement by motexafin gadolinium (Gd-Tex) in vitro. METHODS AND MATERIALS Oxidation of ascorbate and NADPH by Gd-Tex was evaluated in a neutral buffer. Growth inhibition of human uterine cancer cell line MES-SA was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. Clonogenic assays were used to measure radiation response in MES-SA, A549 human lung carcinoma, E89, a CHO cell line variant deficient in glucose-6-phosphate dehydrogenase activity, and murine lymphoma cell lines LYAR and LYAS. RESULTS Gd-Tex catalyzed the oxidation of NADPH and ascorbate under aerobic conditions, forming hydrogen peroxide. Decreased viability was observed in MES-SA cells incubated with Gd-Tex in media containing NADPH or ascorbate. Gd-Tex and ascorbate increased fluorescence in dichlorofluorescin acetate-treated cultures. Synergistic effects on the aerobic radiation response in MES-SA and A549 were seen using Gd-Tex in combination with L-buthionine-(S,R)-sulfoximine (BSO). Incubation with Gd-Tex in the presence of ascorbate increased the aerobic radiation response of E89 and the apoptosis-sensitive B-cell line (LYAS). CONCLUSIONS Gd-Tex sensitizes cells to ionizing radiation by increasing oxidative stress as a consequence of futile redox cycling. Optimization of the concentration of ascorbate (or other reducing species) may be required when evaluating Gd-Tex activity in vitro.


International Journal of Radiation Biology | 1983

Nonprotein Thiols and the Radiation Response of A549 Human Lung Carcinoma Cells

John E. Biaglow; Edward P. Clark; Edward R. Epp; Michele Morse-Guadio; Marie E. Varnes; James B. Mitchell

Glutathione (GSH)-depletion by buthionine sulphoximine (BSO) altered both the aerobic and anaerobic radiation response of A549 human lung cancer cells grown in vitro. The oxygen enhancement ratio (o.e.r) was increased slightly from 3.0-3.3. The lack of an effect of GSH-depletion on o.e.r. reduction, provides a system whereby the mechanism of action of the thiol reactive reagent diethylmaleate (DEM) can be investigated. Pretreatment of cells with DEM, under non-toxic concentrations, removed 13 per cent of the intracellular NPSH and resulted in an o.e.r. of 2. When BSO followed by DEM was used, so that both GSH and NPSH were reduced to zero, an o.e.r. of 1.5 was obtained. Cells treated with 1 mM BSO for 24 hours contained 10 per cent NPSH and no GSH. When these cells were exposed to 0.5 or 1 mM DEM briefly, during irradiation, the o.e.r. was 2.4 and 1.7 respectively. In some cases altered o.e.r.s occurred in combination with increased aerobic responses. This was especially true for aerobic irradiations of BSO-treated cells in the presence or absence of DEM. However, the increased aerobic response was offset by a more dramatic increase in the hypoxic response. These results indicate (a) that GSH plays a significant role in aerobic radiation response but is not a principal factor in o.e.r.-reduction, and (b) that reduction of the o.e.r. by DEM is not due primarily to GSH-removal. The preferential radiosensitization of hypoxic cells by DEM may involve reactions of this compound with NPSH or protein SH, or may be related to the ability of DEM to mimic oxygen as a hypoxic cell radiosensitizer.

Collaboration


Dive into the John E. Biaglow's collaboration.

Top Co-Authors

Avatar

Marie E. Varnes

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen W. Tuttle

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Edward P. Clark

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cameron J. Koch

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Steve Tuttle

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Eric J. Hall

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

James B. Mitchell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yefim Manevich

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge