Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camille L. Stagg is active.

Publication


Featured researches published by Camille L. Stagg.


Global Change Biology | 2016

Beyond just sea‐level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change

Michael J. Osland; Nicholas M. Enwright; Richard H. Day; Christopher A. Gabler; Camille L. Stagg; James B. Grace

Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.


Ecology | 2014

Freshwater availability and coastal wetland foundation species: ecological transitions along a rainfall gradient

Michael J. Osland; Nicholas M. Enwright; Camille L. Stagg

Climate gradient-focused ecological research can provide a foundation for better understanding critical ecological transition points and nonlinear climate–ecological relationships, which is information that can be used to better understand, predict, and manage ecological responses to climate change. In this study, we examined the influence of freshwater availability upon the coverage of foundation plant species in coastal wetlands along a northwestern Gulf of Mexico rainfall gradient. Our research addresses the following three questions: (1) What are the regional-scale relationships between measures of freshwater availability (e.g., rainfall, aridity, freshwater inflow, salinity) and the relative abundance of foundation plant species in tidal wetlands; (2) how vulnerable are foundation plant species in tidal wetlands to future changes in freshwater availability; and (3) what is the potential future relative abundance of tidal wetland foundation plant species under alternative climate change scenarios? We ...


Ecological Applications | 2011

Controls on resilience and stability in a sediment-subsidized salt marsh

Camille L. Stagg; Irving A. Mendelssohn

Although the concept of self-design is frequently employed in restoration, reestablishment of primary physical drivers does not always result in a restored ecosystem having the desired ecological functions that support system resilience and stability. We investigated the use of a primary environmental driver in coastal salt marshes, sediment availability, as a means of promoting the resilience and stability of submerging deltaic salt marshes, which are rapidly subsiding due to natural and human-induced processes. We conducted a disturbance-recovery experiment across a gradient of sediment slurry addition to assess the roles of sediment elevation and soil physico-chemical characteristics on vegetation resilience and stability in two restored salt marshes of differing age (a 15-year-old site and a 5-year-old site). Salt marshes that received moderate intensities of sediment slurry addition with elevations at the mid to high intertidal zone (2-11 cm above local mean sea level; MSL) were more resilient than natural marshes. The primary regulator of enhanced resilience and stability in the restored marshes was the alleviation of flooding stress observed in the natural, unsubsidized marsh. However, stability reached a sediment addition threshold, at an elevation of 11 cm above MSL, with decreasing stability in marshes above this elevation. Declines in resilience and stability above the sediment addition threshold were principally influenced by relatively dry conditions that resulted from insufficient and infrequent flooding at high elevations. Although the older restored marsh has subsided over time, areas receiving too much sediment still had limited stability 15 years later, emphasizing the importance of applying the appropriate amount of sediment to the marsh. In contrast, treated marshes with elevations 2-11 cm above MSL were still more resilient than the natural marsh 15 years after restoration, illustrating that when performed correctly, sediment slurry addition can be a sustainable restoration technique.


Scientific Reports | 2017

Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise

Ken W. Krauss; Nicole Cormier; Michael J. Osland; Matthew L. Kirwan; Camille L. Stagg; Janet A. Nestlerode; Marc Russell; Andrew S. From; Amanda C. Spivak; Darrin D. Dantin; James Harvey; Alejandro E. Almario

Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr−1), with surface elevation change of 4.2–11.0 mm yr−1 compared with 1.5–7.2 mm yr−1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.


Ecology | 2017

Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands

Camille L. Stagg; Donald R. Schoolmaster; Ken W. Krauss; Nicole Cormier; William H. Conner

Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate-change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: (1) a direct pathway representing the effects of flooding on soil moisture, (2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and (3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to drought and sea-level rise, and increased decomposition following a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal wetlands. Here, we identify three causal mechanisms that can reconcile disparities between long-term and short-term salinity impacts on organic matter decomposition.


Ecosystems | 2016

Processes Contributing to Resilience of Coastal Wetlands to Sea-Level Rise

Camille L. Stagg; Ken W. Krauss; Donald R. Cahoon; Nicole Cormier; William H. Conner; Christopher M. Swarzenski

The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise.


Wetlands | 2012

Littoraria irrorata Growth and Survival in a Sediment-Restored Salt Marsh

Camille L. Stagg; Irving A. Mendelssohn

The successful restoration of Littoraria irrorata productivity in rehabilitated salt marshes has received little attention, even though this consumer species has the potential to influence salt marsh production through both bottom-up and top-down pathways. We investigated the impact of a relatively new restoration technique, sediment slurry addition, on the growth and survivorship of L. irrorata to determine 1) how different levels of sediment addition and resulting changes in hydrology influenced L. irrorata productivity and 2) whether or not this technique can generate conditions that are optimal for L. irrorata productivity and functionally equivalent to natural marshes. We found that intermediate sediment additions restored L. irrorata growth responses to levels equivalent to natural marshes. Littoraria irrorata growth and survival closely mirrored trends in Spartina alterniflora cover and were greatest at moderate elevations compared to the frequently flooded degraded marshes and areas of high elevation with low soil moisture and fertility. While changes in physico-chemical properties, such as soil moisture, may have a direct influence on L. irrorata, it was the indirect effect of sediment-slurry addition on S. alterniflora that appeared to most influence L. irrorata production, emphasizing the importance of restoring both abiotic and biotic conditions to achieve functional equivalency.


Journal of Coastal Research | 2017

Determining the spatial variability of wetland soil bulk density, organic matter, and the conversion factor between organic matter and organic carbon across coastal Louisiana, U.S.A.

Hongqing Wang; Sarai C. Piazza; Leigh Anne Sharp; Camille L. Stagg; Brady R. Couvillion; Gregory D. Steyer; Thomas E. McGinnis

ABSTRACT Wang, H.; Piazza, S.C.; Sharp, L.A.; Stagg, C.L.; Couvillion, B.R.; Steyer, G.D., and McGinnis, T.E., 2017. Determining the spatial variability of wetland soil bulk density, organic matter, and the conversion factor between organic matter and organic carbon across coastal Louisiana, U.S.A. Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.


Journal of Ecology | 2018

Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient

Camille L. Stagg; Melissa M. Baustian; Carey L. Perry; Tim J. B. Carruthers; Courtney T. Hall

1.Coastal wetlands store more carbon than most ecosystems globally. As sea level rises, changes in flooding and salinity will potentially impact ecological functions, such as organic matter decomposition, that influence carbon storage. However, little is known about the mechanisms that control organic matter loss in coastal wetlands at the landscape scale. As sea level rises, how will the shift from fresh to salt-tolerant plant communities impact organic matter decomposition? Do long-term, plant-mediated, effects of sea-level rise differ from direct effects of elevated salinity and flooding? 2.We identified internal and external factors that regulated indirect and direct pathways of sea-level rise impacts, respectively, along a landscape-scale salinity gradient that incorporated changes in wetland type (fresh, oligohaline, mesohaline and polyhaline marshes). We found that indirect and direct impacts of sea-level rise had opposing effects on organic matter decomposition. 3.Salinity had an indirect effect on litter decomposition that was mediated through litter quality. Despite significant variation in environmental conditions along the landscape gradient, the best predictors of above- and belowground litter decomposition were internal drivers, initial litter nitrogen content and initial litter lignin content, respectively. Litter decay constants were greatest in the oligohaline marsh and declined with increasing salinity, and the fraction of litter remaining (asymptote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and flooding were positive. External drivers, salinity and flooding, stimulated cellulytic activity, which was highest in the polyhaline marsh. 4.Synthesis: Our results indicate that as sea level rises, initial direct effects of salinity will stimulate decay of labile carbon, but over time as plant communities shift from fresh to polyhaline marsh, litter decay will decline, yielding greater potential for long-term carbon storage. These findings highlight the importance of quantifying carbon loss at multiple temporal scales, not only in coastal wetlands, but also in other ecosystems where plant-mediated responses to climate change will have significant impacts on carbon cycling. This article is protected by copyright. All rights reserved.


Journal of Geophysical Research | 2018

Flooding Alters Plant‐Mediated Carbon Cycling Independently of Elevated Atmospheric CO2 Concentrations

Scott F. Jones; Camille L. Stagg; Ken W. Krauss; Mark W. Hester

Plant-mediated processes determine carbon (C) cycling and storage in many ecosystems; how plant-associated processes may be altered by climate-induced changes in environmental drivers is therefore an essential question for understanding global C cycling. In this study, we hypothesize that environmental alterations associated with near-term climate change can exert strong control on plant-associated ecosystem C cycling and that investigations along an extended hydrologic gradient may give mechanistic insight into C cycling. We utilize a mesocosm approach to investigate the response of plant, soil, and gaseous C cycling to changing hydrologic regimes and elevated atmospheric carbon dioxide (CO2) concentrations expected by 2100 in a coastal salt marsh in Louisiana, USA. Although elevated CO2 had no significant effects on C cycling, we demonstrate that greater average flooding depth stimulated C exchange, with higher rates of labile C decomposition, plant CO2 assimilation, and soil C respiration. Greater average flooding depth also significantly decreased the soil C pool and marginally increased the aboveground biomass C pool, leading to net losses in total C stocks. Further, flooding depths along an extended hydrologic gradient garnered insight into decomposition mechanisms that was not apparent from other data. In C-4 dominated salt marshes, sea level rise will likely overwhelm effects of elevated CO2 with climate change. Deeper flooding associated with sea level rise may decrease long-term soil C pools and quicken C exchange between soil and atmosphere, thereby threatening net C storage in salt marsh habitats. Manipulative studies will be indispensable for understanding biogeochemical cycling under future conditions. Plain Language Summary This study examines how near-term climate change may affect the exchange and storage of carbon by plants in salt marshes. Our results indicate that sea level rise will increase the amount of carbon that is moved from the soil into the atmosphere, shrinking the amount of carbon in salt marsh soil. This may reduce the ability of salt marshes to keep carbon in soil long term and decrease the ability of salt marshes to offset climate change. As salt marshes are some of the best ecosystems on the planet for storing carbon in soils, any change in how these ecosystems process carbon is important to understand.

Collaboration


Dive into the Camille L. Stagg's collaboration.

Top Co-Authors

Avatar

Ken W. Krauss

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Michael J. Osland

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Nicole Cormier

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Nicholas M. Enwright

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Richard H. Day

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Andrew S. From

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald R. Schoolmaster

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James B. Grace

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge