Camille Stevens-Rumann
University of Idaho
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Camille Stevens-Rumann.
Ecology Letters | 2018
Camille Stevens-Rumann; Kerry B. Kemp; Philip E. Higuera; Brian J. Harvey; Monica T. Rother; Daniel C. Donato; Penelope Morgan; Thomas T. Veblen
Forest resilience to climate change is a global concern given the potential effects of increased disturbance activity, warming temperatures and increased moisture stress on plants. We used a multi-regional dataset of 1485 sites across 52 wildfires from the US Rocky Mountains to ask if and how changing climate over the last several decades impacted post-fire tree regeneration, a key indicator of forest resilience. Results highlight significant decreases in tree regeneration in the 21st century. Annual moisture deficits were significantly greater from 2000 to 2015 as compared to 1985-1999, suggesting increasingly unfavourable post-fire growing conditions, corresponding to significantly lower seedling densities and increased regeneration failure. Dry forests that already occur at the edge of their climatic tolerance are most prone to conversion to non-forests after wildfires. Major climate-induced reduction in forest density and extent has important consequences for a myriad of ecosystem services now and in the future.
Ecological Applications | 2016
Camille Stevens-Rumann; Penelope Morgan
Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics.
International Journal of Wildland Fire | 2013
Camille Stevens-Rumann; Kristen L. Shive; Peter Z. Fulé; Carolyn Hull Sieg
Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo–Chediski Fire area. Data from 140 plots on seven paired treated–untreated sites indicated that pre-wildfire treatments reduced fire severity compared with untreated sites. In 2011, coarse woody debris loading (woody material>7.62cm in diameter) was 257% higher and fine woody debris (woody material<7.62cm) was 152% higher on untreated sites than on treated sites. Yet, in spite of higher levels of coarse woody debris on untreated sites, loadings did not exceed recommended ranges based on published literature and many treated sites fell below recommendations. By 2011, basal area and stand density on treated sites and stand density on untreated sites met management guidelines for ponderosa pine forests, but untreated sites had basal areas well below recommendations. Snags declined over this period and only three plots had snags that met minimum size and density requirements for wildlife habitat by 2011. The effects of pre-wildfire treatments are long-lasting and contribute to changes in both overstorey and understorey fuel complexes.
Ecosphere | 2015
Camille Stevens-Rumann; Penelope Morgan; Chad M. Hoffman
Increased wildfire activity and recent bark beetle outbreaks in the western United States have increased the potential for interactions between disturbance types to influence forest characteristics. However, the effects of interactions between bark beetle outbreaks and subsequent wildfires on forest succession remain poorly understood. We collected data in dry mixed conifer forests across Idaho and western Montana to test whether vegetation responses differ between sites experiencing single and repeated disturbances. We compared tree seedling density and age, surface fuel loading, and stand structure characteristics in stands that experienced either high severity wildfire, large-scale tree mortality from bark beetles, or stands that experienced high bark beetle mortality followed by severe wildfire within 3–8 years of attack. Tree seedling density was 300–400% higher in gray bark beetle-affected stands than burned sites, but there was no evidence that a beetle and wildfire interaction affected seedling de...
Entomologia Experimentalis Et Applicata | 2013
Thomas Seth Davis; Stephen F. Garczynski; Camille Stevens-Rumann; Peter J. Landolt
The rate of entry by neonate larvae of the frugivorous codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), into fruit material was investigated. We used no‐choice bioassays in climate‐controlled rooms to assay larval entry across four host plant species (apple, pear, quince, walnut) and three varieties within a single fruit species (apple). Larvae successfully entering apples were reared to adulthood, and we collected tissue samples from apples which were successfully colonized in order to determine sucrose concentrations. This information was used to evaluate differences in adult moth size, development time, and pulp sucrose concentration due to apple variety. Four important findings emerged: (1) neonate larvae had the highest frequency of entry (86% of larvae) into apple fruits, compared with pear (78%), quince (56%), and walnut (32%); (2) the frequency of larval entry into immature apples differed across apple varieties, and larval entry rate was highest in variety Golden Delicious (72%), compared with Granny Smith (46%) and Red Delicious (64%); (3) on average, adult moths were larger and development times were shorter on the variety with the highest entry frequency (Golden Delicious); and (4) apple pulp sucrose concentrations were higher for Golden Delicious (17.5 μg mg−1) than for either Granny Smith (15.9 μg mg−1) or Red Delicious (15.1 μg mg−1) varieties, which correlates positively with entry and development data. We conclude that host fruit species and varietals within a species affect the entry rate of neonate codling moth larvae in no‐choice assays. We hypothesize that larval development is influenced by mean sucrose concentrations or other phytochemical differences associated with host fruit varieties.
International Journal of Wildland Fire | 2018
Zachary D. Lyon; Penelope Morgan; Camille Stevens-Rumann; Aaron M. Sparks; Robert F. Keefe; Alistair M. S. Smith
Managers masticate fuels to reduce extreme fire hazards, but the effect on fire behaviour within the resulting compact fuelbeds is poorly understood. We burned 54 masticated fuelbeds in laboratory experiments one and two growing seasons after mastication and 75 masticated fuelbeds in prescribed fire experiments one growing season after treatment in three replicate Pinus ponderosa stands. Mastication treatments reduced density of trees >5 cm diameter by 30–72% resulting in total fuel depth of 6.9–13.7 cm and surface woody fuel loading of 1.0–16.0 kg m−2. Flame length and rate of spread were low and similar for coarse and fine mastication treatments and controls. Smouldering combustion lasted 6–22 h in prescribed fire experiments where fuelbeds included duff and were well mixed by machinery, compared with <2 h in the laboratory where fuelbeds did not include duff and had varying fuel moisture. Fuel consumption in the prescribed fires was highly variable, ranging from 0 to 20 cm in depth and was less from 2-year-old fuelbeds than 1-year-old fuelbeds in laboratory burns. Compared with fine mastication treatments, coarse treatments took less time to implement and were more cost-effective. Although laboratory experiments expand our understanding of burning masticated fuels under controlled conditions, they did not readily translate to prescribed burning conditions where fuels, weather and ignition patterns were more variable. This highlights the need for more laboratory experiments and in situ research that together can be used to develop much-needed, scalable predictive models of mastication combustion.
Forest Ecology and Management | 2017
Susan J. Prichard; Camille Stevens-Rumann; Paul F. Hessburg
Canadian Journal of Forest Research | 2016
Camille Stevens-Rumann; Susan J. Prichard; Eva K. Strand; Penelope Morgan
Forest Ecology and Management | 2015
Larissa L. Yocom Kent; Kristen L. Shive; Barbara A. Strom; Carolyn Hull Sieg; Molly E. Hunter; Camille Stevens-Rumann; Peter Z. Fulé
Journal of Forestry | 2017
Frank K. Lake; Vita Wright; Penelope Morgan; Mary McFadzen; David B. McWethy; Camille Stevens-Rumann