Camilo Mejia Prada
Jet Propulsion Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Camilo Mejia Prada.
Techniques and Instrumentation for Detection of Exoplanets VIII | 2017
Byoung-Joon Seo; Eric Cady; Brian Gordon; Brian Kern; David S. Marx; Dwight Moody; Richard E. Muller; Keith Patterson; Ilya Y. Poberezhskiy; Fang Shi; Erkin Sidick; John T. Trauger; Daniel W. Wilson; Camilo Mejia Prada
Hybrid Lyot Coronagraph (HLC) is one of the two operating modes of the Wide-Field InfraRed Survey Telescope (WFIRST) coronagraph instrument. Since being selected by National Aeronautics and Space Administration (NASA) in December 2013, the coronagraph technology is being matured to Technology Readiness Level (TRL) 6 by 2018. To demonstrate starlight suppression in presence of expecting on-orbit input wavefront disturbances, we have built a dynamic testbed in Jet Propulsion Laboratory (JPL) in 2016. This testbed, named as Occulting Mask Coronagraph (OMC) testbed, is designed analogous to the WFIRST flight instrument architecture: It has both HLC and Shape Pupil Coronagraph (SPC) architectures, and also has the Low Order Wavefront Sensing and Control (LOWFS/C) subsystem to sense and correct the dynamic wavefront disturbances. We present upto-date progress of HLC mode demonstration in the OMC testbed. SPC results will be reported separately. We inject the flight-like Line of Sight (LoS) and Wavefront Error (WFE) perturbation to the OMC testbed and demonstrate wavefront control using two deformable mirrors while the LOWFS/C is correcting those perturbation in our vacuum testbed. As a result, we obtain repeatable convergence below 5 × 10−9 mean contrast with 10% broadband light centered at 550 nm in the 360 degrees dark hole with working angle between 3 λ/D and 9 λ/D. We present the key hardware and software used in the testbed, the performance results and their comparison to model expectations.
Techniques and Instrumentation for Detection of Exoplanets VIII | 2017
Fang Shi; Xin An; Kunjithapatham Balasubramanian; Eric Cady; Brian Kern; Raymond Lam; David S. Marx; Camilo Mejia Prada; Dwight Moody; Keith Patterson; Ilya Y. Poberezhskiy; Byoung-Joon Seo; Joel Shields; Erkin Sidick; Hong Tang; John T. Trauger; Tuan Truong; Victor White; Daniel W. Wilson; Hanying Zhou
To maintain the required performance of WFIRST Coronagraph in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C uses a Zernike wavefront sensor (ZWFS) with the phase shifting disk combined with the starlight rejecting occulting mask. For wavefront error corrections, WFIRST LOWFS/C uses a fast steering mirror (FSM) for line-of-sight (LoS) correction, a focusing mirror for focus drift correction, and one of the two deformable mirrors (DM) for other low order wavefront error (WFE) correction. As a part of technology development and demonstration for WFIRST Coronagraph, a dedicated Occulting Mask Coronagraph (OMC) testbed has been built and commissioned. With its configuration similar to the WFIRST flight coronagraph instrument the OMC testbed consists of two coronagraph modes, Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC), a low order wavefront sensor (LOWFS), and an optical telescope assembly (OTA) simulator which can generate realistic LoS drift and jitter as well as low order wavefront error that would be induced by the WFIRST telescope’s vibration and thermal changes. In this paper, we will introduce the concept of WFIRST LOWFS/C, describe the OMC testbed, and present the testbed results of LOWFS sensor performance. We will also present our recent results from the dynamic coronagraph tests in which we have demonstrated of using LOWFS/C to maintain the coronagraph contrast with the presence of WFIRST-like line-of-sight and low order wavefront disturbances.
Proceedings of SPIE | 2015
Eric Cady; Camilo Mejia Prada; Xin An; Kunjithapatham Balasubramanian; Rosemary Diaz; N. Jeremy Kasdin; Brian Kern; Andreas Kuhnert; Bijan Nemati; Keith Patterson; Ilya Poberezhskiy; A. J. Eldorado Riggs; Daniel Ryan; Hanying Zhou; Robert Zimmer; Neil Zimmerman
One of the two primary architectures being tested for the WFIRST-AFTA coronagraph instrument is the shaped pupil coronagraph, which uses a binary aperture in a pupil plane to create localized regions of high contrast in a subsequent focal plane. The aperture shapes are determined by optimization, and can be designed to work in the presence of secondary obscurations and spiders - an important consideration for coronagraphy with WFIRST-AFTA. We present the current performance of the shaped pupil testbed, including the results of AFTA Milestone 2, in which ≈ 6 × 10-9 contrast was achieved in three independent runs starting from a neutral setting.
arXiv: Instrumentation and Methods for Astrophysics | 2017
Aki Roberge; Eric Cady; Camilo Mejia Prada; Maxime J. Rizzo; Ewan S. Douglas; Kerri Cahoy; Qian Gong; Tyler D. Groff; John E. Krist; Avi M. Mandell; Michael W. McElwain; A. J. Eldorado Riggs; Prabal Saxena; Neil T. Zimmermann; Timothy D. Brandt
A primary goal of direct imaging techniques is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, coronagraphic instruments have favored integral field spectrographs (IFS) as the science cameras to disperse the entire search area at once and obtain spectra at each location, since the planet position is not known a priori. These spectrographs are useful against confusion from speckles and background objects, and can also help in the speckle subtraction and wavefront control stages of the coronagraphic observation. We present a software package, the Coronagraph and Rapid Imaging Spectrograph in Python (crispy) to simulate the IFS of the WFIRST Coronagraph Instrument (CGI). The software propagates input science cubes using spatially and spectrally resolved coronagraphic focal plane cubes, transforms them into IFS detector maps and ultimately reconstructs the spatio-spectral input scene as a 3D datacube. Simulated IFS cubes can be used to test data extraction techniques, refine sensitivity analyses and carry out design trade studies of the flight CGI-IFS instrument. crispy is a publicly available Python package and can be adapted to other IFS designs.
Proceedings of SPIE | 2016
Hanying Zhou; Bijan Nemati; John E. Krist; Eric Cady; Camilo Mejia Prada; Brian Kern; Ilya Poberezhskiy
JPL has recently passed an important milestone in its technology development for a proposed NASA WFIRST mission coronagraph: demonstration of better than 1x10-8 contrast over broad bandwidth (10%) on both shaped pupil coronagraph (SPC) and hybrid Lyot coronagraph (HLC) testbeds with the WFIRST obscuration pattern. Challenges remain, however, in the technology readiness for the proposed mission. One is the discrepancies between the achieved contrasts on the testbeds and their corresponding model predictions. A series of testbed diagnoses and modeling activities were planned and carried out on the SPC testbed in order to close the gap. A very useful tool we developed was a derived “measured” testbed wavefront control Jacobian matrix that could be compared with the model-predicted “control” version that was used to generate the high contrast dark hole region in the image plane. The difference between these two is an estimate of the error in the control Jacobian. When the control matrix, which includes both amplitude and phase, was modified to reproduce the error, the simulated performance closely matched the SPC testbed behavior in both contrast floor and contrast convergence speed. This is a step closer toward model validation for high contrast coronagraphs. Further Jacobian analysis and modeling provided clues to the possible sources for the mismatch: DM misregistration and testbed optical wavefront error (WFE) and the deformable mirror (DM) setting for correcting this WFE. These analyses suggested that a high contrast coronagraph has a tight tolerance in the accuracy of its control Jacobian. Modifications to both testbed control model as well as prediction model are being implemented, and future works are discussed.
Proceedings of SPIE | 2015
Kunjithapatham Balasubramanian; Victor White; Karl Yee; Pierre M. Echternach; Richard E. Muller; Matthew R. Dickie; Eric Cady; Camilo Mejia Prada; Daniel Ryan; Ilya Poberezhskiy; Hanying Zhou; Brian Kern; A. J. Riggs; Neil Zimmerman; Dan Sirbu; Stuart B. Shaklan; Jeremy Kasdin
Star light suppression technologies to find and characterize faint exoplanets include internal coronagraph instruments as well as external star shade occulters. Currently, the NASA WFIRST-AFTA mission study includes an internal coronagraph instrument to find and characterize exoplanets. Various types of masks could be employed to suppress the host star light to about 10-9 level contrast over a broad spectrum to enable the coronagraph mission objectives. Such masks for high contrast internal coronagraphic imaging require various fabrication technologies to meet a wide range of specifications, including precise shapes, micron scale island features, ultra-low reflectivity regions, uniformity, wave front quality, achromaticity, etc. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks by combining electron beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each, highlighting milestone accomplishments from the High Contrast Imaging Testbed (HCIT) at JPL and from the High Contrast Imaging Lab (HCIL) at Princeton University. We also present briefly the technologies applied to fabricate laboratory scale star shade masks.
Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave | 2018
Fang Shi; Brian Kern; David S. Marx; Keith Patterson; Camilo Mejia Prada; Byoung-Joon Seo; Jean C. Shelton; Joel Shields; Hong Tang; Tuan Truong; John Shaw; Eric Cady; Raymond Lam
To maintain the required performance for the WFIRST Coronagraph Instrument (CGI) in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The WFIRST CGI LOWFS/C subsystem will use the Zernike wavefront sensor, which has a phase-shifting disk combined with the coronagraph’s focal plane mask, to sense the low-order wavefront drift and line-of-sight (LoS) error using the rejected starlight. The dynamic tests on JPL’s Occulting Mask Coronagraph (OMC) Testbed have demonstrated that LOWFS/C can maintain coronagraph contrast to better than 10-8 in presence of WFIRST-like line of sight and low order wavefront disturbances in both Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC) modes. However, the previous dynamic tests have been done using a bright source with photon flux equivalent to stellar magnitude of MV = -3.5. The LOWFS/C technology development on the OMC testbed has since then concentrated in evaluating and improving the LOWFS/C performance under the realistic photon flux that is equivalent to WFIRST Coronagraph target stars. Our recent testbed tests have demonstrated that the LOWFS/C can work cohesively with the stellar light suppression wavefront control, which brings broad band coronagraph contrast from ~1x10-6 to 6x10-9, while LOWF/C is simultaneously suppressing the WFIRST like LoS and low order wavefront drift disturbances on a source that photon flux is equivalent to a MV = 2 star. This lab demonstration mimics the CGI initial dark hole establish process on a bright reference star. We have also demonstrated on the testbed that LOWFS/C can maintain the coronagraph contrast by suppressing the WFIRST like line-of-sight disturbances on a fainter MV = 5 star. This mimics scenario of CGI science target observations. In this paper we will present the recent dynamic testbed performance results of LOWFS/C LoS loops and low order wavefront error correction loop on the flight like photon flux.
Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave | 2018
David S. Marx; Eric Cady; A. J. Eldorado Riggs; Camilo Mejia Prada; Brian Kern; Byoung-Joon Seo; Fang Shi
The Shaped Pupil Coronagraph (SPC) is one of the two operating modes of the baseline coronagraph instrument for the proposed WFIRST mission. While in SPC mode, multiple sets of shaped pupil masks and focal plane masks would be available for various imaging tasks. The disk science mask set (SPC-DSM) is designed for exozodiacal disk science. With a 360 degree high contrast field of view, extending up to 20 λ/D, the SPC-DSM provides a powerful tool to study exozodiacal dust clouds associated with stellar debris disks to gain insight of the exoplanet formation and stellar disk dynamics. We will describe the performance verification and demonstration of the SPC-DSM coronagraph as tested in the high contrast imaging testbed (HCIT) at JPL. The goal of the testbed demonstration is an average contrast of 5e-9 over a 10% bandwidth centered at 565nm, in a field of view extending from 6.5 λ/D to 20 λ/D. We will discuss electric field conjugation, performance metrics, and model agreement as applied to the SPC-DSM.
Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave | 2018
Byoung-Joon Seo; Kunjithapatham Balasubramanian; Eric Cady; Brian Gordon; Raymond Lam; David S. Marx; Dwight Moody; Richard E. Muller; Keith Patterson; Ilya Y. Poberezhskiy; Camilo Mejia Prada; A. J. Eldorado Riggs; Fang Shi; John T. Trauger; Daniel W. Wilson; Brian Kern
In order to validate required operation of the proposed Wide-Field InfraRed Survey Telescope (WFIRST) coronagraph instrument, we have built a testbed in Jet Propulsion Laboratory (JPL), which is analogous to the baseline WFIRST coronagraph instrument architecture. Since its birth in 2016, this testbed, named as Occulting Mask Coronagraph (OMC) testbed, has demonstrated several crucial technological milestones: Broadband high contrast demonstration in both Hybrid Lyot Coronagraph (HLC) and Shape Pupil Coronagraph (SPC) modes while the Low Order Wavefront Sensing and Control (LOWFS/C) subsystem senses and corrects the dynamic flight-like wavefront disturbances. In this paper, we present up-to-date progress of HLC mode demonstration in the OMC testbed. While injecting the flight-like low photon flux starlight with expected Line of Sight (LoS) and Wavefront Error (WFE) perturbation to the OMC testbed, we demonstrate generating high contrast dark hole images. We first study the expected photon flux in actual flight environment, and estimate detection noise and estimation accuracy of the complex electric field if the wavefront sensing algorithm is used based on the pair-wise difference imaging. Then, we introduce our improved scheme to mitigate this photon-starved flight-like low flux environment. As a result, we generate a dark hole that meets the WFIRST raw contrast requirements using the 2nd magnitude star light. We establish the key ideas, describe test setups, and demonstrate test results with data analysis.
Adaptive Optics Systems VI | 2018
Lewis C. Roberts; Jean Shelton; Camilo Mejia Prada; Li Yao; Xingtao Wu; Yuquin Wu; Seth R. Meeker
Deformable mirrors are at the heart of any adaptive optics system. We present the results of tests of deformable mirrors from Microscale. One of the key innovations of these deformable mirrors is that the facesheet is created from a silicon on insulator (SOI) wafer with integral posts for mechanical linkage to the actuators. This dramat- ically reduces the variability of the influence function. The facesheet is bonded to an array of piezoelectric stack actuators. The actuators are currently PZT, but single crystal PMN actuators are being developed. We present results of optical and electrical tests of the performance of the DM.