Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kunjithapatham Balasubramanian is active.

Publication


Featured researches published by Kunjithapatham Balasubramanian.


Journal of Astronomical Telescopes, Instruments, and Systems | 2015

Demonstration of high contrast with an obscured aperture with the WFIRST-AFTA shaped pupil coronagraph

Eric Cady; Camilo Mejia Prada; Xin An; Kunjithapatham Balasubramanian; Rosemary T. Diaz; N. Jeremy Kasdin; Brian Kern; Andreas Kuhnert; Bijan Nemati; Ilya Poberezhskiy; A. J. Eldorado Riggs; Robert P. Zimmer; Neil Zimmerman

Abstract. The coronagraph instrument on the Wide-Field Infrared Survey Telescope-Astrophysics-Focused Telescope Asset (WFIRST-AFTA) mission study has two coronagraphic architectures, shaped pupil and hybrid Lyot, which may be interchanged for use in different observing scenarios. Each architecture relies on newly developed mask components to function in the presence of the AFTA aperture, and so both must be matured to a high technology readiness level in advance of the mission. A series of milestones were set to track the development of the technologies required for the instrument; we report on completion of WFIRST-AFTA coronagraph milestone 2—a narrowband 10−8 contrast test with static aberrations for the shaped pupil—and the plans for the upcoming broadband coronagraph milestone 5.


Proceedings of SPIE | 2007

Demonstration of high contrast in 10% broadband light with the shaped pupil coronagraph

Ruslan Belikov; Amir Give'on; Brian Kern; Eric Cady; Michael A. Carr; Stuart B. Shaklan; Kunjithapatham Balasubramanian; Victor White; Pierre M. Echternach; Matt Dickie; John T. Trauger; Andreas Kuhnert; N. Jeremy Kasdin

The Shaped Pupil Coronagraph (SPC) is a high-contrast imaging system pioneered at Princeton for detection of extra-solar earthlike planets. It is designed to achieve 10-10 contrast at an inner working angle of 4λ/D in broadband light. A critical requirement in attaining this contrast level in practice is the ability to control wavefront phase and amplitude aberrations to at least λ/104 in rms phase and 1/1000 rms amplitude, respectively. Furthermore, this has to be maintained over a large spectral band. The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Lab (JPL) is a state-of-the-art facility for studying such high contrast imaging systems and wavefront control methods. It consists of a vacuum chamber containing a configurable coronagraph setup with a Xinetics deformable mirror. Previously, we demonstrated 4x10-8 contrast with the SPC at HCIT in 10% broadband light. The limiting factors were subsequently identified as (1) manufacturing defects due to minimal feature size constraints on our shaped pupil masks and (2) the inefficiency of the wavefront correction algorithm we used (classical speckle nulling) to correct for these defects. In this paper, we demonstrate the solutions to both of these problems. In particular, we present a method to design masks with practical minimal feature sizes and show new manufactured masks with few defects. These masks were installed at HCIT and tested using more sophisticated wavefront control algorithms based on energy minimization of light in the dark zone. We present the results of these experiments, notably a record 2.4×10-9 contrast in 10% broadband light.


Journal of Astronomical Telescopes, Instruments, and Systems | 2016

Low-order wavefront sensing and control for WFIRST-AFTA coronagraph

Fang Shi; Kunjithapatham Balasubramanian; Randall Hein; Raymond Lam; Douglas Moore; James G. Moore; Keith Patterson; Ilya Poberezhskiy; Joel Shields; Erkin Sidick; Hong Tang; Tuan Truong; J. Kent Wallace; Xu Wang; Daniel W. Wilson

Abstract. To maintain the required Wide-Field Infrared Survey Telescope (WFIRST) coronagraph performance in a realistic space environment, a low-order wavefront sensing and control (LOWFS/C) subsystem is necessary. The LOWFS/C uses the rejected stellar light from the coronagraph to sense and suppress the telescope pointing errors as well as low-order wavefront errors (WFEs) due to changes in thermal loading of the telescope and the rest of the observatory. We will present a conceptual design of a LOWFS/C subsystem for the WFIRST-AFTA coronagraph. This LOWFS/C uses a Zernike phase contrast wavefront sensor (ZWFS) with a phase shifting disk combined with the stellar light rejecting occulting masks, a key concept to minimize the noncommon path error. We will present our analysis of the sensor performance and evaluate the performance of the line-of-sight jitter suppression loop, as well as the low-order WFE correction loop with a deformable mirror on the coronagraph. We will also report the LOWFS/C testbed design and the preliminary in-air test results, which show a very promising performance of the ZWFS.


Journal of Astronomical Telescopes, Instruments, and Systems | 2015

WFIRST-AFTA coronagraph shaped pupil masks: design, fabrication, and characterization

Kunjithapatham Balasubramanian; Victor White; Karl Y. Yee; P. M. Echternach; Richard E. Muller; Matthew R. Dickie; Eric Cady; Camilo Mejia Prada; Daniel J. Ryan; Ilya Poberezhskiy; Brian Kern; Hanying Zhou; John E. Krist; Bijan Nemati; A. J. Eldorado Riggs; Neil Zimmerman; N. Jeremy Kasdin

Abstract. NASA WFIRST-AFTA mission study includes a coronagraph instrument to find and characterize exoplanets. Various types of masks could be employed to suppress the host starlight to about 10−9 level contrast over a broad spectrum to enable the coronagraph mission objectives. Such masks for high-contrast internal coronagraphic imaging require various fabrication technologies to meet a wide range of specifications, including precise shapes, micron scale island features, ultralow reflectivity regions, uniformity, wave front quality, and achromaticity. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks by combining electron beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each, highlighting milestone accomplishments from the High Contrast Imaging Testbed at JPL and from the High Contrast Imaging Lab at Princeton University.


Journal of Astronomical Telescopes, Instruments, and Systems | 2016

Performance and prospects of far ultraviolet aluminum mirrors protected by atomic layer deposition

John Hennessy; Kunjithapatham Balasubramanian; Christopher Moore; April D. Jewell; Shouleh Nikzad; Manuel A. Quijada

Abstract. Metallic aluminum mirrors remain the best choice for high reflectance applications at ultraviolet wavelengths (90 to 320 nm) and maintain good performance through optical and infrared wavelengths. Transparent protective coatings are required to prevent the formation of an oxide layer, which severely degrades reflectance at wavelengths below 250 nm. We report on the development of atomic layer deposition (ALD) processes for thin protective films of aluminum fluoride that are viable for application at substrate temperatures <200°C. Reflectance measurements of aluminum films evaporated in ultrahigh vacuum conditions, and protected mirrors encapsulated with ALD AlF3 are used to evaluate the far ultraviolet (90 to 190 nm) and near ultraviolet (190 to 320 nm) performance of both the ALD material and the underlying metal. Optical modeling is used to predict the performance of optimized structures for future astronomical mirror applications.


Journal of Astronomical Telescopes, Instruments, and Systems | 2016

Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope

Matthew R. Bolcar; Kunjithapatham Balasubramanian; Julie A. Crooke; Lee D. Feinberg; Manuel A. Quijada; Bernard J. Rauscher; David C. Redding; Norman Rioux; Stuart B. Shaklan; H. Philip Stahl; Carl Michael Stahle; Harley Thronson

Abstract. The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, “Enduring Quests, Daring Visions.” The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.


Proceedings of SPIE | 2012

How ELTs will acquire the first spectra of rocky habitable planets

Olivier Guyon; Frantz Martinache; Eric Cady; Ruslan Belikov; Kunjithapatham Balasubramanian; Daniel W. Wilson; Christophe Clergeon; Mala Mateen

ELTs will offer angular resolution around 10mas in the near-IR and unprecedented sensitivity. While direct imaging of Earth-like exoplanets around Sun-like stars will stay out of reach of ELTs, we show that habitable planets around nearby M-type main sequence stars can be directly imaged. For about 300 nearby M dwarfs, the angular separation at maximum elongation is at or beyond 1 ë/D in the near-IR for an ELT. The planet to star contrast is 1e-7 to 1e-8, similar to what the upcoming generation of Extreme-AO systems will achieve on 8-m telescopes, and the potential planets are sufficiently bright for near-IR spectroscopy. We show that the technological solutions required to achieve this goal exist. For example, the PIAACMC coronagraph can deliver full starlight rejection, 100% throughput and sub-ë/D IWA for the EELT, GMT and TMT pupils. A closely related coronagraph is part of SCExAO on Subaru. We conclude that large ground-based telescopes will acquire the first high quality spectra of habitable planets orbiting M-type stars, while future space mission(s) will later target F-G-K type stars.


Journal of Vacuum Science and Technology | 2016

Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition

John Hennessy; April D. Jewell; Kunjithapatham Balasubramanian; Shouleh Nikzad

Aluminum fluoride (AlF3) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF3 at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates that the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths.


Proceedings of SPIE | 2015

Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

Matthew R. Bolcar; Kunjithapatham Balasubramanian; Mark Clampin; Julie A. Crooke; Lee D. Feinberg; Marc Postman; Manuel A. Quijada; Bernard J. Rauscher; David C. Redding; Norman Rioux; Stuart B. Shaklan; H. Philip Stahl; Carl Michael Stahle; Harley Thronson

The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) – thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.


Proceedings of SPIE | 2014

Technology development towards WFIRST-AFTA coronagraph

Ilya Poberezhskiy; Feng Zhao; Xin An; Kunjithapatham Balasubramanian; Ruslan Belikov; Eric Cady; Richard T. Demers; Rosemary Diaz; Qian Gong; Brian Gordon; Renaud Goullioud; Frank Greer; Olivier Guyon; Michael E. Hoenk; N. Jeremy Kasdin; Brian Kern; John E. Krist; Andreas Kuhnert; Michael W. McElwain; B. Mennesson; Dwight Moody; Richard E. Muller; Bijan Nemati; Keith Patterson; A. J. Riggs; Daniel Ryan; Byoung Joon Seo; Stuart B. Shaklan; Erkin Sidick; Fang Shi

NASA’s WFIRST-AFTA mission concept includes the first high-contrast stellar coronagraph in space. This coronagraph will be capable of directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths, around nearby stars. In this paper we present the plan for maturing coronagraph technology to TRL5 in 2014-2016, and the results achieved in the first 6 months of the technology development work. The specific areas that are discussed include coronagraph testbed demonstrations in static and simulated dynamic environment, design and fabrication of occulting masks and apodizers used for starlight suppression, low-order wavefront sensing and control subsystem, deformable mirrors, ultra-low-noise spectrograph detector, and data post-processing.

Collaboration


Dive into the Kunjithapatham Balasubramanian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Cady

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian Kern

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erkin Sidick

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor White

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge