Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Candace K. Mathiason is active.

Publication


Featured researches published by Candace K. Mathiason.


Journal of Virology | 2004

Transmission of Prions from Mule Deer and Elk with Chronic Wasting Disease to Transgenic Mice Expressing Cervid PrP

Shawn R. Browning; Gary L. Mason; Tanya Seward; Mike Green; Gwyneth A. J. Eliason; Candace K. Mathiason; Michael W. Miller; Elizabeth S. Williams; Ed Hoover; Glenn C. Telling

ABSTRACT We generated mice expressing cervid prion protein to produce a transgenic system simulating chronic wasting disease (CWD) in deer and elk. While normal mice were resistant to CWD, these transgenic mice uniformly developed signs of neurological dysfunction ∼230 days following intracerebral inoculation with four CWD isolates. Inoculated transgenic mice homozygous for the transgene array developed disease after ∼160 days. The brains of sick transgenic mice exhibited widespread spongiform degeneration and contained abnormal prion protein and abundant amyloid plaques, many of which were florid plaques. Transmission studies indicated that the same prion strain caused CWD in the analyzed mule deer and elk. These mice provide a new and reliable tool for detecting CWD prions.


Science | 2010

Prion Strain Mutation Determined by Prion Protein Conformational Compatibility and Primary Structure

Rachel Angers; Hae Eun Kang; Dana Napier; Shawn R. Browning; Tanya Seward; Candace K. Mathiason; Aru Balachandran; Debbie McKenzie; Joaquín Castilla; Claudio Soto; Jean E. Jewell; Catherine Graham; Edward A. Hoover; Glenn C. Telling

CWD Strain Variation So-called prion diseases are fatal neurogenerative disorders that include chronic wasting disease (CWD) found in deer and other cervids. Prion diseases are thought to be caused by infectious proteins (prions) in the absence of associated infectious DNA. Nevertheless, prion strains have been isolated that can mutate in the absence of nucleic acids, and these strain properties control the ability of prions to cross species barriers. Angers et al. (p. 1154, published online 13 May; see the Perspective by Collinge) address the issue of strain variation in the context of CWD. Whereas the host range of this contagious disease continues to expand, the prevalence of CWD strains has not been determined. Understanding CWD strain variation may be important in predicting and preventing any future risks to human health. The stability of two related strains is influenced by a species-specific amino acid difference in deer and elk prions. Prions are infectious proteins composed of the abnormal disease-causing isoform PrPSc, which induces conformational conversion of the host-encoded normal cellular prion protein PrPC to additional PrPSc. The mechanism underlying prion strain mutation in the absence of nucleic acids remains unresolved. Additionally, the frequency of strains causing chronic wasting disease (CWD), a burgeoning prion epidemic of cervids, is unknown. Using susceptible transgenic mice, we identified two prevalent CWD strains with divergent biological properties but composed of PrPSc with indistinguishable biochemical characteristics. Although CWD transmissions indicated stable, independent strain propagation by elk PrPC, strain coexistence in the brains of deer and transgenic mice demonstrated unstable strain propagation by deer PrPC. The primary structures of deer and elk prion proteins differ at residue 226, which, in concert with PrPSc conformational compatibility, determines prion strain mutation in these cervids.


PLOS ONE | 2009

Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure.

Candace K. Mathiason; Sheila A. Hays; Jenny G. Powers; Jeanette Hayes-Klug; Julia A. Langenberg; Sallie J. Dahmes; David A. Osborn; Karl V. Miller; Robert J. Warren; Gary L. Mason; Edward A. Hoover

Key to understanding the epidemiology and pathogenesis of prion diseases, including chronic wasting disease (CWD) of cervids, is determining the mode of transmission from one individual to another. We have previously reported that saliva and blood from CWD-infected deer contain sufficient infectious prions to transmit disease upon passage into naïve deer. Here we again use bioassays in deer to show that blood and saliva of pre-symptomatic deer contain infectious prions capable of infecting naïve deer and that naïve deer exposed only to environmental fomites from the suites of CWD-infected deer acquired CWD infection after a period of 15 months post initial exposure. These results help to further explain the basis for the facile transmission of CWD, highlight the complexities associated with CWD transmission among cervids in their natural environment, emphasize the potential utility of blood-based testing to detect pre-clinical CWD infection, and could augur similar transmission dynamics in other prion infections.


PLOS ONE | 2009

Detection of Sub-Clinical CWD Infection in Conventional Test-Negative Deer Long after Oral Exposure to Urine and Feces from CWD+ Deer

Nicholas J. Haley; Candace K. Mathiason; Mark D. Zabel; Glenn C. Telling; Edward A. Hoover

Background Chronic wasting disease (CWD) of cervids is a prion disease distinguished by high levels of transmissibility, wherein bodily fluids and excretions are thought to play an important role. Using cervid bioassay and established CWD detection methods, we have previously identified infectious prions in saliva and blood but not urine or feces of CWD+ donors. More recently, we identified very low concentrations of CWD prions in urine of deer by cervid PrP transgenic (Tg[CerPrP]) mouse bioassay and serial protein misfolding cyclic amplification (sPMCA). This finding led us to examine further our initial cervid bioassay experiments using sPMCA. Objectives We sought to investigate whether conventional test-negative deer, previously exposed orally to urine and feces from CWD+ sources, may be harboring low level CWD infection not evident in the 19 month observation period. We further attempted to determine the peripheral PrPCWD distribution in these animals. Methods Various neural and lymphoid tissues from conventional test-negative deer were reanalyzed for CWD prions by sPMCA and cervid transgenic mouse bioassay in parallel with appropriate tissue-matched positive and negative controls. Results PrPCWD was detected in the tissues of orally exposed deer by both sPMCA and Tg[CerPrP] mouse bioassay; each assay revealed very low levels of CWD prions previously undetectable by western blot, ELISA, or IHC. Serial PMCA analysis of individual tissues identified that obex alone was positive in 4 of 5 urine/feces exposed deer. PrPCWD was amplified from both lymphoid and neural tissues of positive control deer but not from identical tissues of negative control deer. Discussion Detection of subclinical infection in deer orally exposed to urine and feces (1) suggests that a prolonged subclinical state can exist, necessitating observation periods in excess of two years to detect CWD infection, and (2) illustrates the sensitive and specific application of sPMCA in the diagnosis of low-level prion infection. Based on these results, it is possible that low doses of prions, e.g. following oral exposure to urine and saliva of CWD-infected deer, bypass significant amplification in the LRS, perhaps utilizing a neural conduit between the alimentary tract and CNS, as has been demonstrated in some other prion diseases.


Journal of Virology | 2011

Detection of Chronic Wasting Disease Prions in Salivary, Urinary, and Intestinal Tissues of Deer: Potential Mechanisms of Prion Shedding and Transmission

Nicholas J. Haley; Candace K. Mathiason; Scott Carver; Mark D. Zabel; Glenn C. Telling; Edward A. Hoover

ABSTRACT Efficient horizontal transmission is a signature trait of chronic wasting disease (CWD) in cervids. Infectious prions shed into excreta appear to play a key role in this facile transmission, as has been demonstrated by bioassays of cervid and transgenic species and serial protein misfolding cyclic amplification (sPMCA). However, the source(s) of infectious prions in these body fluids has yet to be identified. In the present study, we analyzed tissues proximate to saliva, urine, and fecal production by sPMCA in an attempt to elucidate this unique aspect of CWD pathogenesis. Oropharyngeal, urogenital, and gastrointestinal tissues along with blood and obex from CWD-exposed cervids (comprising 27 animals and >350 individual samples) were analyzed and scored based on the apparent relative CWD burden. PrPCWD-generating activity was detected in a range of tissues and was highest in the salivary gland, urinary bladder, and distal intestinal tract. In the same assays, blood from the same animals and unseeded normal brain homogenate controls (n = 116 of 117) remained negative. The PrP-converting activity in peripheral tissues varied from 10−11- to 100-fold of that found in brain of the same animal. Deer with highest levels of PrPCWD amplification in the brain had higher and more widely disseminated prion amplification in excretory tissues. Interestingly, PrPCWD was not demonstrable in these excretory tissues by conventional Western blotting, suggesting a low prion burden or the presence of protease-sensitive infectious prions destroyed by harsh proteolytic treatments. These findings offer unique insights into the transmission of CWD in particular and prion infection and trafficking overall.


Journal of Virology | 2010

B Cells and Platelets Harbor Prion Infectivity in the Blood of Deer Infected with Chronic Wasting Disease

Candace K. Mathiason; Jeanette Hayes-Klug; Sheila A. Hays; Jenny G. Powers; David A. Osborn; Sallie J. Dahmes; Karl V. Miller; Robert J. Warren; Gary L. Mason; Glenn C. Telling; Alan J. Young; Edward A. Hoover

ABSTRACT Substantial evidence for prion transmission via blood transfusion exists for many transmissible spongiform encephalopathy (TSE) diseases. Determining which cell phenotype(s) is responsible for trafficking infectivity has important implications for our understanding of the dissemination of prions, as well as their detection and elimination from blood products. We used bioassay studies of native white-tailed deer and transgenic cervidized mice to determine (i) if chronic wasting disease (CWD) blood infectivity is associated with the cellular versus the cell-free/plasma fraction of blood and (ii) in particular if B-cell (MAb 2-104+), platelet (CD41/61+), or CD14+ monocyte blood cell phenotypes harbor infectious prions. All four deer transfused with the blood mononuclear cell fraction from CWD+ donor deer became PrPCWD positive by 19 months postinoculation, whereas none of the four deer inoculated with cell-free plasma from the same source developed prion infection. All four of the deer injected with B cells and three of four deer receiving platelets from CWD+ donor deer became PrPCWD positive in as little as 6 months postinoculation, whereas none of the four deer receiving blood CD14+ monocytes developed evidence of CWD infection (immunohistochemistry and Western blot analysis) after 19 months of observation. Results of the Tg(CerPrP) mouse bioassays mirrored those of the native cervid host. These results indicate that CWD blood infectivity is cell associated and suggest a significant role for B cells and platelets in trafficking CWD infectivity in vivo and support earlier tissue-based studies associating putative follicular B cells with PrPCWD. Localization of CWD infectivity with leukocyte subpopulations may aid in enhancing the sensitivity of blood-based diagnostic assays for CWD and other TSEs.


PLOS ONE | 2013

Rapid Antemortem Detection of CWD Prions in Deer Saliva

Davin M. Henderson; Matteo Manca; Nicholas J. Haley; Nathaniel D. Denkers; Amy V. Nalls; Candace K. Mathiason; Byron Caughey; Edward A. Hoover

Chronic wasting disease (CWD) is an efficiently transmitted prion disease of cervids, now identified in 22 United States, 2 Canadian provinces and Korea. One hallmark of CWD is the shedding of infectious prions in saliva, as demonstrated by bioassay in deer. It is also clear that the concentration of prions in saliva, blood, urine and feces is much lower than in the nervous system or lymphoid tissues. Rapid in vitro detection of CWD (and other) prions in body fluids and excreta has been problematic due to the sensitivity limits of direct assays (western blotting, ELISA) and the presence of inhibitors in these complex biological materials that hamper detection. Here we use real-time quaking induced conversion (RT-QuIC) to demonstrate CWD prions in both diluted and prion-enriched saliva samples from asymptomatic and symptomatic white-tailed deer. CWD prions were detected in 14 of 24 (58.3%) diluted saliva samples from CWD-exposed white-tailed deer, including 9 of 14 asymptomatic animals (64.2%). In addition, a phosphotungstic acid enrichment enhanced the RT-QuIC assay sensitivity, enabling detection in 19 of 24 (79.1%) of the above saliva samples. Bioassay in Tg[CerPrP] mice confirmed the presence of infectious prions in 2 of 2 RT-QuIC-positive saliva samples so examined. The modified RT-QuIC analysis described represents a non-invasive, rapid ante-mortem detection of prions in complex biologic fluids, excreta, or environmental samples as well as a tool for exploring prion trafficking, peripheralization, and dissemination.


PLOS ONE | 2013

In Vitro Detection of prionemia in TSE-Infected Cervids and Hamsters

Alan M. Elder; Davin M. Henderson; Amy V. Nalls; Jason M. Wilham; Byron Caughey; Edward A. Hoover; Jason C. Bartz; Candace K. Mathiason

Blood-borne transmission of infectious prions during the symptomatic and asymptomatic stages of disease occurs for both human and animal transmissible spongiform encephalopathies (TSEs). The geographical distribution of the cervid TSE, chronic wasting disease (CWD), continues to spread across North America and the prospective number of individuals harboring an asymptomatic infection of human variant Creutzfeldt-Jakob Disease (vCJD) in the United Kingdom has been projected to be ~1 in 3000 residents. Thus, it is important to monitor cervid and human blood products to ensure herd health and human safety. Current methods for detecting blood-associated prions rely primarily upon bioassay in laboratory animals. While bioassay provides high sensitivity and specificity, it requires many months, animals, and it is costly. Here we report modification of the real time quaking-induced conversion (RT-QuIC) assay to detect blood-borne prions in whole blood from prion-infected preclinical white-tailed deer, muntjac deer, and Syrian hamsters, attaining sensitivity of >90% while maintaining 100% specificity. Our results indicate that RT-QuIC methodology as modified can provide consistent and reliable detection of blood-borne prions in preclinical and symptomatic stages of two animal TSEs, offering promise for prionemia detection in other species, including humans.


Journal of General Virology | 2015

Quantitative assessment of prion infectivity in tissues and body fluids by real-time quaking-induced conversion

Davin M. Henderson; Kristen A. Davenport; Nicholas J. Haley; Nathaniel D. Denkers; Candace K. Mathiason; Edward A. Hoover

Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving the templated conversion of the normal cellular prion protein (PrP(C)) to a pathogenic misfolded conformation. Templated conversion has been modelled in several in vitro assays, including serial protein misfolding amplification, amyloid seeding and real-time quaking-induced conversion (RT-QuIC). As RT-QuIC measures formation of amyloid fibrils in real-time, it can be used to estimate the rate of seeded conversion. Here, we used samples from deer infected with chronic wasting disease (CWD) in RT-QuIC to show that serial dilution of prion seed was linearly related to the rate of amyloid formation over a range of 10(-3) to 10(-8) µg. We then used an amyloid formation rate standard curve derived from a bioassayed reference sample (CWD+ brain homogenate) to estimate the prion seed concentration and infectivity in tissues, body fluids and excreta. Using these methods, we estimated that urine and saliva from CWD-infected deer both contained 1-5 LD50 per 10 ml. Thus, over the 1-2 year course of an infection, a substantial environmental reservoir of CWD prion contamination accumulates.


Journal of Virology | 2013

Aerosol Transmission of Chronic Wasting Disease in White-Tailed Deer

Nathaniel D. Denkers; Jeanette Hayes-Klug; Kelly Anderson; Davis M. Seelig; Nicholas J. Haley; Sallie J. Dahmes; David A. Osborn; Karl V. Miller; Robert J. Warren; Candace K. Mathiason; Edward A. Hoover

ABSTRACT While the facile transmission of chronic wasting disease (CWD) remains incompletely elucidated, studies in rodents suggest that exposure of the respiratory mucosa may be an efficient pathway. The present study was designed to address this question in the native cervid host. Here, we demonstrate aerosol transmission of CWD to deer with a prion dose >20-fold lower than that used in previous oral inoculations. Inhalation of prions may facilitate transmission of CWD and, perhaps, other prion infections.

Collaboration


Dive into the Candace K. Mathiason's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy V. Nalls

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin McNulty

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Kelly Anderson

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge