Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathaniel D. Denkers is active.

Publication


Featured researches published by Nathaniel D. Denkers.


PLOS ONE | 2013

Rapid Antemortem Detection of CWD Prions in Deer Saliva

Davin M. Henderson; Matteo Manca; Nicholas J. Haley; Nathaniel D. Denkers; Amy V. Nalls; Candace K. Mathiason; Byron Caughey; Edward A. Hoover

Chronic wasting disease (CWD) is an efficiently transmitted prion disease of cervids, now identified in 22 United States, 2 Canadian provinces and Korea. One hallmark of CWD is the shedding of infectious prions in saliva, as demonstrated by bioassay in deer. It is also clear that the concentration of prions in saliva, blood, urine and feces is much lower than in the nervous system or lymphoid tissues. Rapid in vitro detection of CWD (and other) prions in body fluids and excreta has been problematic due to the sensitivity limits of direct assays (western blotting, ELISA) and the presence of inhibitors in these complex biological materials that hamper detection. Here we use real-time quaking induced conversion (RT-QuIC) to demonstrate CWD prions in both diluted and prion-enriched saliva samples from asymptomatic and symptomatic white-tailed deer. CWD prions were detected in 14 of 24 (58.3%) diluted saliva samples from CWD-exposed white-tailed deer, including 9 of 14 asymptomatic animals (64.2%). In addition, a phosphotungstic acid enrichment enhanced the RT-QuIC assay sensitivity, enabling detection in 19 of 24 (79.1%) of the above saliva samples. Bioassay in Tg[CerPrP] mice confirmed the presence of infectious prions in 2 of 2 RT-QuIC-positive saliva samples so examined. The modified RT-QuIC analysis described represents a non-invasive, rapid ante-mortem detection of prions in complex biologic fluids, excreta, or environmental samples as well as a tool for exploring prion trafficking, peripheralization, and dissemination.


Journal of General Virology | 2015

Quantitative assessment of prion infectivity in tissues and body fluids by real-time quaking-induced conversion

Davin M. Henderson; Kristen A. Davenport; Nicholas J. Haley; Nathaniel D. Denkers; Candace K. Mathiason; Edward A. Hoover

Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving the templated conversion of the normal cellular prion protein (PrP(C)) to a pathogenic misfolded conformation. Templated conversion has been modelled in several in vitro assays, including serial protein misfolding amplification, amyloid seeding and real-time quaking-induced conversion (RT-QuIC). As RT-QuIC measures formation of amyloid fibrils in real-time, it can be used to estimate the rate of seeded conversion. Here, we used samples from deer infected with chronic wasting disease (CWD) in RT-QuIC to show that serial dilution of prion seed was linearly related to the rate of amyloid formation over a range of 10(-3) to 10(-8) µg. We then used an amyloid formation rate standard curve derived from a bioassayed reference sample (CWD+ brain homogenate) to estimate the prion seed concentration and infectivity in tissues, body fluids and excreta. Using these methods, we estimated that urine and saliva from CWD-infected deer both contained 1-5 LD50 per 10 ml. Thus, over the 1-2 year course of an infection, a substantial environmental reservoir of CWD prion contamination accumulates.


Journal of Virology | 2013

Aerosol Transmission of Chronic Wasting Disease in White-Tailed Deer

Nathaniel D. Denkers; Jeanette Hayes-Klug; Kelly Anderson; Davis M. Seelig; Nicholas J. Haley; Sallie J. Dahmes; David A. Osborn; Karl V. Miller; Robert J. Warren; Candace K. Mathiason; Edward A. Hoover

ABSTRACT While the facile transmission of chronic wasting disease (CWD) remains incompletely elucidated, studies in rodents suggest that exposure of the respiratory mucosa may be an efficient pathway. The present study was designed to address this question in the native cervid host. Here, we demonstrate aerosol transmission of CWD to deer with a prion dose >20-fold lower than that used in previous oral inoculations. Inhalation of prions may facilitate transmission of CWD and, perhaps, other prion infections.


Journal of General Virology | 2010

Aerosol and nasal transmission of chronic wasting disease in cervidized mice.

Nathaniel D. Denkers; Davis M. Seelig; Glenn C. Telling; Edward A. Hoover

Little is known regarding the potential risk posed by aerosolized prions. Chronic wasting disease (CWD) is transmitted horizontally, almost surely by mucosal exposure, and CWD prions are present in saliva and urine of infected animals. However, whether CWD may be transmissible by the aerosol or nasal route is not known. To address this question, FVB mice transgenetically expressing the normal cervid PrPC protein [Tg(cerPrP) mice] were exposed to CWD prions by either nose-only aerosol exposure or by drop-wise instillation into the nostrils. Mice were monitored for signs of disease for up to 755 days post-inoculation (p.i.) and by examination of tissues for lesions and PrPCWD after necropsy. In particular, nasal mucosa, vomeronasal organ, lungs, lymphoid tissue and the brain were assessed for PrPCWD by Western blotting and immunohistochemistry. Six of seven aerosol-exposed Tg(cerPrP) mice developed clinical signs of neurological dysfunction mandating euthanasia between 411 and 749 days p.i. In all these mice, CWD infection was confirmed by detection of spongiform lesions and PrPCWD in the brain. Two of nine intranasally inoculated Tg(cerPrP) mice also developed transmissible spongiform encephalopathy associated with PrPCWD between 417 and 755 days p.i. No evidence of PrPCWD was detected in CWD-inoculated Tg(cerPrP) mice examined at pre-terminal time points. These results demonstrate that CWD can be transmitted by aerosol (as well as nasal) exposure and suggest that exposure via the respiratory system merits consideration for prion disease transmission and biosafety.


Journal of Virology | 2011

Minor Oral Lesions Facilitate Transmission of Chronic Wasting Disease

Nathaniel D. Denkers; Glenn C. Telling; Edward A. Hoover

ABSTRACT While chronic wasting disease (CWD) prion transmission, entry, and trafficking remain incompletely elucidated, natural exposure of the oral and/or nasal mucous membranes seems certain. Cervids commonly sustain minor lesions on oral mucous membranes that could have an impact on susceptibility to prion infection. To explore this potential cofactor, we studied cohorts of cervid PrP transgenic mice with or without superficial abrasions on the lingual mucosa to determine whether minor oral mucosa lesions may enhance susceptibility to CWD infections. Results demonstrated that minor lingual abrasions substantially facilitate CWD transmission, revealing a cofactor that may be significant in cervids and perhaps other species.


Vaccine | 2015

Mucosal immunization with an attenuated Salmonella vaccine partially protects white-tailed deer from chronic wasting disease

Fernando Goni; Candace K. Mathiason; Lucía Yim; Kinlung Wong; Jeanette Hayes-Klug; Amy V. Nalls; Daniel Peyser; Veronica Estevez; Nathaniel D. Denkers; Jinfeng Xu; David A. Osborn; Karl V. Miller; Robert J. Warren; David R. Brown; José A. Chabalgoity; Edward A. Hoover; Thomas Wisniewski

Prion disease is a unique category of illness, affecting both animals and humans, in which the underlying pathogenesis is related to a conformational change of a normal, self-protein called PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie). Bovine spongiform encephalopathy (BSE), a prion disease believed to have arisen from feeding cattle with prion contaminated meat and bone meal products, crossed the species barrier to infect humans. Chronic wasting disease (CWD) infects large numbers of deer and elk, with the potential to infect humans. Currently no prionosis has an effective treatment. Previously, we have demonstrated we could prevent transmission of prions in a proportion of susceptible mice with a mucosal vaccine. In the current study, white-tailed deer were orally inoculated with attenuated Salmonella expressing PrP, while control deer were orally inoculated with vehicle attenuated Salmonella. Once a mucosal response was established, the vaccinated animals were boosted orally and locally by application of polymerized recombinant PrP onto the tonsils and rectal mucosa. The vaccinated and control animals were then challenged orally with CWD-infected brain homogenate. Three years post CWD oral challenge all control deer developed clinical CWD (median survival 602 days), while among the vaccinated there was a significant prolongation of the incubation period (median survival 909 days; p=0.012 by Weibull regression analysis) and one deer has remained CWD free both clinically and by RAMALT and tonsil biopsies. This negative vaccinate has the highest titers of IgA in saliva and systemic IgG against PrP. Western blots showed that immunoglobulins from this vaccinate react to PrP(CWD). We document the first partially successful vaccination for a prion disease in a species naturally at risk.


Journal of Virology | 2015

Longitudinal Detection of Prion Shedding in Saliva and Urine by Chronic Wasting Disease-Infected Deer by Real-Time Quaking-Induced Conversion

Davin M. Henderson; Nathaniel D. Denkers; Clare E. Hoover; Nina C. Garbino; Candace K. Mathiason; Edward A. Hoover

ABSTRACT Chronic wasting disease (CWD) is an emergent, rapidly spreading prion disease of cervids. Shedding of infectious prions in saliva and urine is thought to be an important factor in CWD transmission. To help to elucidate this issue, we applied an in vitro amplification assay to determine the onset, duration, and magnitude of prion shedding in longitudinally collected saliva and urine samples from CWD-exposed white-tailed deer. We detected prion shedding as early as 3 months after CWD exposure and sustained shedding throughout the disease course. We estimated that the 50% lethal dose (LD50) for cervidized transgenic mice would be contained in 1 ml of infected deer saliva or 10 ml of urine. Given the average course of infection and daily production of these body fluids, an infected deer would shed thousands of prion infectious doses over the course of CWD infection. The direct and indirect environmental impacts of this magnitude of prion shedding on cervid and noncervid species are surely significant. IMPORTANCE Chronic wasting disease (CWD) is an emerging and uniformly fatal prion disease affecting free-ranging deer and elk and is now recognized in 22 U.S. states and 2 Canadian provinces. It is unique among prion diseases in that it is transmitted naturally through wild populations. A major hypothesis to explain CWDs florid spread is that prions are shed in excreta and transmitted via direct or indirect environmental contact. Here we use a rapid in vitro assay to show that infectious doses of CWD prions are in fact shed throughout the multiyear disease course in deer. This finding is an important advance in assessing the risks posed by shed CWD prions to animals as well as humans.


Journal of Virology | 2017

Pathways of Prion Spread during Early Chronic Wasting Disease in Deer

Clare E. Hoover; Kristen A. Davenport; Davin M. Henderson; Nathaniel D. Denkers; Candace K. Mathiason; Claudio Soto; Mark D. Zabel; Edward A. Hoover

ABSTRACT Among prion infections, two scenarios of prion spread are generally observed: (i) early lymphoid tissue replication or (ii) direct neuroinvasion without substantial antecedent lymphoid amplification. In nature, cervids are infected with chronic wasting disease (CWD) prions by oral and nasal mucosal exposure, and studies of early CWD pathogenesis have implicated pharyngeal lymphoid tissue as the earliest sites of prion accumulation. However, knowledge of chronological events in prion spread during early infection remains incomplete. To investigate this knowledge gap in early CWD pathogenesis, we exposed white-tailed deer to CWD prions by mucosal routes and performed serial necropsies to assess PrPCWD tissue distribution by real-time quaking-induced conversion (RT-QuIC) and tyramide signal amplification immunohistochemistry (TSA-IHC). Although PrPCWD was not detected by either method in the initial days (1 and 3) postexposure, we observed PrPCWD seeding activity and follicular immunoreactivity in oropharyngeal lymphoid tissues at 1 and 2 months postexposure (MPE). At 3 MPE, PrPCWD replication had expanded to all systemic lymphoid tissues. By 4 MPE, the PrPCWD burden in all lymphoid tissues had increased and approached levels observed in terminal disease, yet there was no evidence of nervous system invasion. These results indicate the first site of CWD prion entry is in the oropharynx, and the initial phase of prion amplification occurs in the oropharyngeal lymphoid tissues followed by rapid dissemination to systemic lymphoid tissues. This lymphoid replication phase appears to precede neuroinvasion. IMPORTANCE Chronic wasting disease (CWD) is a universally fatal transmissible spongiform encephalopathy affecting cervids, and natural infection occurs through oral and nasal mucosal exposure to infectious prions. Terminal disease is characterized by PrPCWD accumulation in the brain and lymphoid tissues of affected animals. However, the initial sites of prion accumulation and pathways of prion spread during early CWD infection remain unknown. To investigate the chronological events of early prion pathogenesis, we exposed deer to CWD prions and monitored the tissue distribution of PrPCWD over the first 4 months of infection. We show CWD uptake occurs in the oropharynx with initial prion replication in the draining oropharyngeal lymphoid tissues, rapidly followed by dissemination to systemic lymphoid tissues without evidence of neuroinvasion. These data highlight the two phases of CWD infection: a robust prion amplification in systemic lymphoid tissues prior to neuroinvasion and establishment of a carrier state.


Journal of General Virology | 2016

Enhanced prion detection in biological samples by magnetic particle extraction and real-time quaking-induced conversion.

Nathaniel D. Denkers; Davin M. Henderson; Candace K. Mathiason; Edward A. Hoover

Prions have been demonstrated in body fluids and excreta using bioassay, but at levels too low for detection by conventional direct-detection assays. More rapid and sensitive detection of prions in these clinically accessible specimens would be valuable for diagnosis and investigations of transmission, environmental impact, and interventions. In addition to very low concentrations of prions, in vitro amplification assays are challenged by the presence of inhibitors in these complex sources. Here, we leverage the prion attribute of avid metal binding with the versatile power of real-time quaking-induced conversion (RT-QuIC) to enhance and simplify detection of chronic wasting-disease prions in biological samples. Iron oxide particle binding and magnetic extraction combined with RT-QuIC permitted rapid analysis of the low concentrations of prions in saliva, urine, faeces, and cerebrospinal fluid. These methods are pertinent to ante-mortem detection, monitoring, and surveillance, and could conceivably be applicable to other protein-misfolding disorders.


Journal of General Virology | 2017

Detection of chronic wasting disease prion seeding activity in deer and elk feces by real-time quaking-induced conversion

Davin M. Henderson; Joanne Tennant; Nicholas J. Haley; Nathaniel D. Denkers; Candace K. Mathiason; Edward A. Hoover

Chronic wasting disease (CWD) is an emergent prion disease affecting cervid species in North America, Canada, South Korea, and recently, Norway. Detection of CWD has been advanced by techniques that rely on amplification of low levels of prion amyloid to a detectable level. However, the increased sensitivity of amplification assays is often compromised by inhibitors and/or activators in complex biologic samples including body fluids, excreta, or the environment. Here, we adapt real-time quaking-induced conversion conditions to specifically detect CWD prions in fecal samples from both experimentally infected deer and naturally infected elk and estimate environmental contamination. The results have application to detection, surveillance and management of CWD, and potentially to other protein-misfolding diseases.

Collaboration


Dive into the Nathaniel D. Denkers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy V. Nalls

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Clare E. Hoover

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Brian M. Brost

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byron Caughey

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge