Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Candan Tamerler is active.

Publication


Featured researches published by Candan Tamerler.


Macromolecular Rapid Communications | 2015

Coupling Infusion and Gyration for the Nanoscale Assembly of Functional Polymer Nanofibers Integrated with Genetically Engineered Proteins

Siqi Zhang; Banu Taktak Karaca; Sarah Kay VanOosten; Esra Yuca; Suntharavathanan Mahalingam; Mohan Edirisinghe; Candan Tamerler

Nanofibers featuring functional nanoassemblies show great promise as enabling constituents for a diverse range of applications in areas such as tissue engineering, sensing, optoelectronics, and nanophotonics due to their controlled organization and architecture. An infusion gyration method is reported that enables the production of nanofibers with inherent biological functions by simply adjusting the flow rate of a polymer solution. Sufficient polymer chain entanglement is obtained at Berry number > 1.6 to make bead‐free fibers integrated with gold nanoparticles and proteins, in the diameter range of 117–216 nm. Integration of gold nanoparticles into the nanofiber assembly is followed using a gold‐binding peptide tag genetically conjugated to red fluorescence protein (DsRed). Fluorescence microscopy analysis corroborated with Fourier transform infrared spectroscopy (FTIR) data confirms the integration of the engineered red fluorescence protein with the nanofibers. The gold nanoparticle decorated nanofibers having red fluorescence protein as an integral part keep their biological functionality including copper‐induced fluorescence quenching of the DsRed protein due to its selective Cu+2 binding. Thus, coupling the infusion gyration method in this way offers a simple nanoscale assembly approach to integrate a diverse repertoire of protein functionalities into nanofibers to generate biohybrid materials for imaging, sensing, and biomaterial applications.


ACS Applied Materials & Interfaces | 2016

Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

Hilal Yazici; Mary B. O'Neill; Turgay Kacar; Brandon Wilson; Ersin Emre Oren; Mehmet Sarikaya; Candan Tamerler

Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Bio-inspired hard-to-soft interface for implant integration to bone

Yan Zhou; Malcolm L. Snead; Candan Tamerler

UNLABELLEDnAccomplishing full, functional integration at the host-to-biomaterial interface has been a critical roadblock in engineering implants with performance similar to biological materials. Molecular recognition-based self-assembly, coupled with biochemical signaling, may lead to controllable and predictable cellular differentiation at the implant interface. Here, we engineer a bio-inspired interface built upon a chimeric peptide. Binding to the biomaterial interface is achieved using a molecular recognition domain specific for the titanium/titanium alloy implant surface and a biochemical signal guiding stem cells to differentiate by activating the Wnt signaling pathway for bone formation. During a critical period of host cell growth and determination, the bioactive implant interface signals mouse, as well as human, stem cells to differentiate along osteogenic lineages. The Wnt-induced cells show enhanced mineral deposition in an extracellular matrix of their creation and an enhanced gene expression profile consistent with osteogenesis, thereby providing a bone-to-implant interface that promotes bone regeneration.nnnFROM THE CLINICAL EDITORnThis team of authors studied methods for enhanced hard-to-soft interface for implant integration to bone, and demonstrate how a bio-inspired surface built upon a chimeric peptide may be utilized for this purpose.


Macromolecular Bioscience | 2017

New Generation of Tunable Bioactive Shape Memory Mats Integrated with Genetically Engineered Proteins.

Xiaowen Wu; Suntharavathanan Mahalingam; Sarah Kay VanOosten; Cate Wisdom; Candan Tamerler; Mohan Edirisinghe

Aligned poly(l-lactide)/poly(methyl methacrylate) binary blend fibers and mats loaded with a chimeric green fluorescence protein having a bioactive peptide with hydroxyapatite binding and mineralization property are prepared by pressurized gyration. The effect of processing parameters on the product morphologies, and the shape memory properties of these samples are investigated. Integration of hydroxyapatite nanoparticles into the fiber assembly is self-directed using the hydroxyapatite-binding property of the peptide genetically engineered to green fluorescence protein. Fluorescence microscopy analysis corroborated with Fourier transform infrared spectroscopy (FTIR) data confirms the integration of the chimeric protein with the fibers. An enzyme based remineralization assay is conducted to study the effects of peptide-mediated mineralization within the fiber mats. Raman and FTIR spectral changes observed following the peptide-mediated mineralization provides an initial step toward a soft-hard material transition. These results show that programmable shape memory properties can be obtained by incorporating genetically engineered bioactive peptide domains into polymer fibers.


Applied Biochemistry and Biotechnology | 2016

Selection of Nucleic Acid Aptamers Specific for Mycobacterium tuberculosis.

Erkan Mozioğlu; Ozgur Gokmen; Candan Tamerler; Zühtü Tanıl Kocagöz; Muslum Akgoz

Tuberculosis (TB) remains to be a major global health problem, with about 9 million new cases and 1.4 million deaths in 2011. For the control of tuberculosis as well as other infectious diseases, WHO recommended “ASSURED” (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free, and Deliverable to the end user) diagnostic tools that can easily be maintained and used in developing countries. Aptamers are promising tools for developing point-of-care diagnostic assays for TB. In this study, ssDNA aptamers that recognize Mycobacterium tuberculosis H37Ra were selected by systematic evolution of ligands by exponential enrichment (SELEX). For this purpose, two different selection protocols, ultrafiltration and centrifugation, were applied. A total of 21xa0TB specific aptamers were selected. These aptamers exhibited “G-rich” regions on the 3′ terminus of the aptamers, including a motif of “TGGGG,” “GTGG,” or “CTGG.” Binding capability of selected aptamers were investigated by quantitative PCR and Mtb36 DNA aptamer was found the most specific aptamer to M. tuberculosis H37Ra. The dissociation constant (Kd) of Mtb36 aptamer was calculated as 5.09u2009±u20091.43xa0nM in 95xa0% confidence interval. Relative binding ratio of Mtb36 aptamer to M. tuberculosis H37Ra over Mycobacterium bovis and Escherichia coli was also determined about 4 times and 70 times more, respectively. Mtb36 aptamer is highly selective for M. tuberculosis, and it can be used in an aptamer-based biosensor for the detection of M. tuberculosis.


Biomacromolecules | 2014

Thermodynamics of Engineered Gold Binding Peptides: Establishing the Structure–Activity Relationships

Urartu Ozgur Safak Seker; Brandon Wilson; John L. Kulp; John Spencer Evans; Candan Tamerler; Mehmet Sarikaya

Adsorption behavior of a gold binding peptide was experimentally studied to achieve kinetics and thermodynamics parameters toward understanding of the binding of an engineered peptide onto a solid metal surface. The gold-binding peptide, GBP1, was originally selected using a cell surface display library and contains 14 amino acid residues. In this work, single- and three-repeats of GBP1 were used to assess the effects of two parameters: molecular architecture versus secondary structure on adsorption on to gold substrate. The adsorption measurements were carried out using surface plasmon resonance (SPR) spectroscopy at temperatures ranging from 10 to 55 °C. At all temperatures, two different regimes of peptide adsorption were observed, which, based on the model, correspond to two sets of thermodynamics values. The values of enthalpy, ΔH(ads), and entropy, ΔS(ads), in these two regimes were determined using the vant Hoff approach and Gibbs-Helmholtz relationship. In general, the values of enthalpy for both peptides are negative indicating GBP1 binding to gold is an exothermic phenomenon and that the binding of three repeat gold binding peptide (3l-GBP1) is almost 5 times tighter than that for the single repeat (l-GBP1). More intriguing result is that the entropy of adsorption for the 3l-GBP1 is negative (-43.4 ± 8.5 cal/(mol K)), while that for the l-GBP1 is positive (10.90 ± 1.3 cal/(mol K)). Among a number of factors that synergistically contribute to the decrease of entropy, long-range ordered self-assembly of the 3l-GBP1 on gold surface is the most effective, probably through both peptide-solid and peptide-peptide intermolecular interactions. Additional adsorption experiments were conducted in the presence of 2,2,2-trifluoroethanol (TFE) to determine how the conformational structures of the biomolecules responded to the environmental perturbation. We found that the peptides differ in their conformational responses to the change in solution conditions; while l-GBP does not fold in the presence of TFE, 3l-GBP1 adopted two types of secondary structure (β-strand, α-helix) and that peptides binding to the solid is enhanced by the presence of low percentages of TFE solvent. Not only do these kinetics and thermodynamics results provide adsorption behavior and binding of genetically engineered peptides for inorganics (GEPI), but they could also provide considerable insights into fundamental understanding peptide molecular recognition and their selective specificity for the solids. Moreover, comprehensive work described herein suggests that multiple repeat forms of the solid binding peptides possess a conformational component that can be exploited to further tailor affinity and binding of a given sequence to a solid material followed by ordered assembly as a convenient tool in future practical applications.


RSC Advances | 2016

Self-strengthening hybrid dental adhesive via visible-light irradiation triple polymerization

Linyong Song; Qiang Ye; Xueping Ge; Anil Misra; Candan Tamerler; Paulette Spencer

A self-strengthening methacrylate-based dental adhesive system was developed by introducing an epoxy cyclohexyl trimethoxysilane (TS) which contains both epoxy and methoxysilyl functional groups. The experimental formulation, HEMA/BisGMA/TS (22.5/27.5/50, wt%), was polymerized by visible-light. Real-time Fourier transform infrared spectroscopy (FTIR) was used to investigate in situ the free radical polymerization of methacrylate, ring-opening cationic polymerization of epoxy, and photoacid-induced sol-gel reactions. Among the three simultaneous reactions, the reaction rate of the free radical polymerization was the highest and the hydrolysis/condensation rate was the lowest. With 40s-irradiation, the degrees of conversion of the double bond and epoxy groups at 600 s were 73.2±1.2%, 87.9±2.4%, respectively. Hydrolysis of the methoxysilyl group was initially <5%, and increased gradually to about 50% after 48 h dark storage. Photoacids generated through the visible-light-induced reaction were effective in catalyzing both epoxy ring-opening polymerization and methoxysilyl sol-gel reaction. The mechanical properties of copolymers made with TS concentrations from 5 to 35 wt% were obtained using dynamic mechanical analysis (DMA). In wet conditions, the storage moduli at 70 °C and glass transition temperature were significantly higher than that of the control (p<0.05); these properties increased with TS concentration and storage time. The post reaction of hydrolysis/condensation of alkoxysilane could provide persistent strengthening whether in a neutral or acidic environment and these characteristics could lead to enhanced mechanical properties in the oral environment. The cumulative amount of leached species decreased significantly in the TS-containing copolymers. These results provide valuable information for the development of dental adhesives with reduced leaching of methacrylate monomers and enhanced mechanical properties under the wet, oral environment.


Archive | 2014

Addressable Biological Functionalization of Inorganics: Materials-Selective Fusion Proteins in Bio-nanotechnology

Banu Taktak Karaca; Marketa Hnilova; Candan Tamerler

Biological systems have developed a wide range of ingenious solutions, which serve as valuable sources for inspiration in designing new materials and systems. The evolutionary pathways through which biological systems have been formed build upon the biomolecular machinery bridging multiple length scales to exhibit a multitude of diverse outstanding properties. With a growing understanding of the molecular processes involved, biological principles are regularly revisited for developing new bio-enabled approaches to materials engineering. A number of biomolecules play important roles in biological systems by performing various tasks based on their functional specificity and their precise molecular recognition capability. Proteins are specifically involved in both collecting and transporting raw materials and interacting with ions. Proteins systematically undergo self- and co-assembly to yield short- and long-range ordered nuclei, substrates and other cellular organelles, as well as to catalyze reactions. The precise molecular recog- nition and the self-assembly exhibited in these interactions are an outcome of evolutionary process, where proteins have undergone cycles of structural fittings that lead to improved specific interactions. In the last decade, peptides have been utilized as critical building blocks to mimic biomolecular capabilities of proteins and to develop unique novel hybrid materials for a variety of practical applications. Here in, we summarize the inspirations that allow engineers to


Dental Materials | 2017

Probing the neutralization behavior of zwitterionic monomer-containing dental adhesive

Linyong Song; Qiang Ye; Xueping Ge; Anil Misra; Candan Tamerler; Paulette Spencer

OBJECTIVEnTo investigate the polymerization kinetics, neutralization behavior, and mechanical properties of amine-functionalized dental adhesive cured in the presence of zwitterionic monomer, methacryloyloxyethyl phosphorylcholine (MPC).nnnMETHODSnThe control adhesive was a mixture based on HEMA/BisGMA/2-N-morpholinoethyl methacrylate (MEMA) (40/30/30, w/w/w). The control and experimental formulations containing MPC were characterized with regard to water miscibility of liquid resins, photopolymerization kinetics, water sorption and solubility, dynamic mechanical properties and leachables from the polymers (aged in ethanol). The neutralization behavior of the adhesives was determined by monitoring the pH of lactic acid (LA) solution.nnnRESULTSnThe water miscibility decreased with increasing MPC amount. The water sorption of experimental copolymer specimen was greater than the control. The addition of 8wt% water led to improved photo-polymerization efficiency for experimental formulations at MPC of 2.5 and 5wt%, and significant reduction in the cumulative amounts of leached HEMA, BisGMA, and MEMA, i.e. 90, 60 and 50% reduction, respectively. The neutralization rate of MPC-containing adhesive was faster than control. The optimal MPC concentration in the formulations was 5wt%.nnnSIGNIFICANCEnIncompatibility between MEMA and MPC led to a decrease in water miscibility of the liquid resins. Water (at 8wt%) in the MPC-containing formulations (2.5-5wt% MPC) led to higher DC, faster RPmax and significant reduction in leached HEMA, BisGMA, and MEMA. The neutralization rate was enhanced with the addition of MPC in the amine-containing formulation. Promoting the neutralization capability of dentin adhesives could play an important role in reducing recurrent decay at the composite/tooth interface.


Acta Biomaterialia | 2017

Fabrication of hybrid crosslinked network with buffering capabilities and autonomous strengthening characteristics for dental adhesives

Linyong Song; Qiang Ye; Xueping Ge; Anil Misra; Candan Tamerler; Paulette Spencer

Ingress of bacteria and fluids at the interfacial gaps between the restorative composite biomaterial and the tooth structure contribute to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of bacteria. Neutralizing the microenvironment at the tooth/composite interface offers promise for reducing the damage provoked by cariogenic and aciduric bacteria. We address this problem by designing a dental adhesive composed of hybrid network to provide buffering and autonomous strengthening simultaneously. Two amino functional silanes, 2-hydroxy-3-morpholinopropyl (3-(triethoxysilyl)propyl) carbamate and 2-hydroxy-3-morpholinopropyl (3-(trimethoxysilyl)propyl) carbamate were synthesized and used as co-monomers. Combining free radical initiated polymerization (polymethacrylate-based network) and photoacid-induced sol-gel reaction (polysiloxane) results in the hybrid network formation. Resulting formulations were characterized with regard to real-time photo-polymerization, water sorption, leached species, neutralization, and mechanical properties. Results from real-time FTIR spectroscopic studies indicated that ethoxy was less reactive than methoxy substituent. The neutralization results demonstrated that the methoxy-containing adhesives have acute and delayed buffering capabilities. The mechanical properties of synthetic copolymers tested in dry conditions were improved via condensation reaction of the hydrolyzed organosilanes. The leaching from methoxy containing copolymers was significantly reduced. The sol-gel reaction provided a chronic and persistent reaction in wet condition-performance that offers potential for reducing secondary decay and increasing the functional lifetime of dental adhesives.nnnSTATEMENT OF SIGNIFICANCEnThe interfacial gaps between the restorative composite biomaterial and the tooth structure contributes to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of more cariogenic and aciduric bacteria. This paper reports a novel, synthetic resin that provides buffering capability and autonomous strengthening characteristics. In this work, two amino functional silanes were synthesized and the effect of alkoxy substitutions on the photoacid-induced sol-gel reaction was investigated. We evaluated the neutralization capability (monitoring the pH of lactic acid solution) and the autonomous strengthening property (monitoring the mechanical properties of the hybrid copolymers under wet conditions and quantitatively analyzing the leachable species by HPLC). The novel resin investigated in this study offers the potential benefits of reducing the risk of recurrent decay and prolonging the functional lifetime of dental adhesives.

Collaboration


Dive into the Candan Tamerler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang Ye

University of Kansas

View shared research outputs
Top Co-Authors

Avatar

Muslum Akgoz

Scientific and Technological Research Council of Turkey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erkan Mozioğlu

Scientific and Technological Research Council of Turkey

View shared research outputs
Researchain Logo
Decentralizing Knowledge