Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Canhui Liu is active.

Publication


Featured researches published by Canhui Liu.


PLOS Neglected Tropical Diseases | 2010

Molecular Evidence for a Functional Ecdysone Signaling System in Brugia malayi

George Tzertzinis; Ana L. Egaña; Subba R. Palli; Marc Robinson-Rechavi; Chris R. Gissendanner; Canhui Liu; Thomas R. Unnasch

Background Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor) and USP (Ultraspiracle). Methods and Findings We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE). In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor) homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone. Conclusions Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together confirm that an ecdysone signaling system operates in B. malayi and strongly suggest that Bma-EcR plays a central role in it. Furthermore, our study proposes that existing compounds targeting the insect ecdysone signaling pathway should be considered as potential pharmacological agents against filarial parasites.


Molecular and Biochemical Parasitology | 2009

The splice leader addition domain represents an essential conserved motif for heterologous gene expression in B. malayi.

Canhui Liu; Chitra Chauhan; Charles R. Katholi; Thomas R. Unnasch

Two promoters from the human filarial parasite Brugia malayi have been mapped in detail. The essential domains of both promoters lacked canonical eukaryotic core promoter motifs. However, the largest contiguous essential domain in both promoters flanked and included the splice leader addition site. These findings suggested that the region flanking the trans-splicing addition site might represent a conserved core domain in B. malayi promoters. To test this hypothesis, the putative promoters of 12 trans-spliced genes encoding ribosomal protein homologues from B. malayi were isolated and tested for activity in a B. malayi transient transfection system. Of the 12 domains examined, 11 produced detectable reporter gene activity. Mutant constructs of the six most active promoters were prepared in which the spliced leader acceptor site and the 10 nt upstream and downstream of the site were deleted. All deletion constructs exhibited >90% reduction in reporter gene activity relative to their respective wild type sequences. A conserved pyrimidine-rich tract was located directly upstream from the spliced leader splice acceptor site which contained a conserved T residue located at position -3. Mutation of the entire polypyrimidine tract or the conserved T individually resulted in the loss of over 90% of reporter gene activity. In contrast, mutation of the splice acceptor site did not significantly reduce promoter activity. These data suggest that the region surrounding the splice acceptor site in the ribosomal promoters represents a conserved essential domain which functions independently of splice leader addition.


PLOS Neglected Tropical Diseases | 2016

Identification of Ecdysone Hormone Receptor Agonists as a Therapeutic Approach for Treating Filarial Infections.

Amruta S. Mhashilkar; Sai Lakshmana Vankayala; Canhui Liu; Fiona L. Kearns; Priyanka Mehrotra; George Tzertzinis; Subba R. Palli; H. Lee Woodcock; Thomas R. Unnasch

Background A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. Methodology/ Principal Findings Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. Conclusions The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites.


Molecular and Biochemical Parasitology | 2012

Identification of genes containing ecdysone response elements in the genome of Brugia malayi.

Canhui Liu; Tracy Enright; George Tzertzinis; Thomas R. Unnasch

Recent studies have demonstrated that filarial parasites contain a functional homologue of the insect ecdysone receptor (EcR). As a first step in deciphering the physiological role that ecdysteroids play in filarial parasites, adult female parasites cultured in the presence and absence of 20-OH ecdysone were metabolically labeled. Gel electrophoretic analysis of proteins extracted from the cultured parasites revealed changes in the level of expression of several proteins, indicating that adult female parasites contained an ecdysone-responsive gene network. A bioinformatic analysis was then conducted to identify putative ecdysone response elements (EcREs) in the Brugia malayi genome. A total of 18 genes were identified that contained putative EcREs located in the 4 kbp upstream from the start of their open reading frames. The most common functional classifications of the encoded proteins were factors involved in transcription and metabolism. These genes revealed a number of different developmental patterns of transcription. The promoter of one EcRE-containing gene was cloned into a luciferase reporter vector and transfected into B. malayi embryos. Reporter gene expression from embryos transfected with this construct was up-regulated by 20-OH ecdysone. Deletion and substitution mutations in the canonical EcRE resulted in a loss of the ecdysone response. These results demonstrate the presence of functional EcREs in the B. malayi genome.


Molecular and Biochemical Parasitology | 2011

Analysis of transcriptional regulation of tetracycline responsive genes in Brugia malayi

Canhui Liu; Patrick Vander Kelen; Elodie Ghedin; Sara Lustigman; Thomas R. Unnasch

The Wolbachia endosymbiont of the human filarial parasites is necessary for parasite reproduction, making it an attractive chemotherapeutic target. Previous studies have demonstrated that mRNA levels of several nuclearly encoded genes are altered as a result of exposure to antibiotics that eliminate the endosymbiont, suggesting that they may be involved in maintaining the parasite-endosymbiont relationship. Here, we tested the hypothesis that the increase in mRNA levels of certain nuclearly encoded genes of Brugia malayi in response to tetracycline treatment involved specific regulatory elements present in the promoters of these genes. The promoters of three such genes (BmRPL13, BmRPS4 and BmHSP70) were tested for tetracycline responsiveness utilizing a homologous transient transcription system. Reporter gene expression driven by all three promoters was up-regulated in transfected embryos exposed to tetracycline. Substitution mutagenesis was employed to map the cis-acting elements responsible for this response in the BmHSP70 promoter. Tetracycline responsiveness was found to be distinct from the cis-acting elements involved in regulating the stress response from the BmHSP70 promoter; rather, tetracycline responsiveness was mediated by a TATAA-box like element. This study represents the first demonstration of small molecule-mediated gene regulation of a native B. malayi promoter.


Molecular and Biochemical Parasitology | 2010

The role of local secondary structure in the function of the trans splicing motif of Brugia malayi

Canhui Liu; Chitra Chauhan; Thomas R. Unnasch

A 7-nt motif (the trans-splicing motif or TSM) was previously shown to be necessary and sufficient to direct trans-splicing of transgenic mRNAs in transgenic Brugia malayi embryos. Insertion of the TSM into two genes lacking a TSM homologue resulted in trans-splicing of transgenic mRNAs from one transgene but not the other, suggesting that local sequence context might affect TSM function. To test this hypothesis, constructs inserting the TSM into different positions of two B. malayi genes were tested for their ability to support trans-splicing of transgenic mRNAs. Transgenic mRNAs derived from constructs in which the insertion of the TSM did not result in a perturbation of the local predicted secondary structure were trans-spliced, while those in which the TSM perturbed the local secondary structure were not. These data suggest that local secondary structure plays a role in the ability of the TSM to direct trans-splicing.


Molecular and Biochemical Parasitology | 2011

The role of polymorphisms in the spliced leader addition domain in determining promoter activity in Brugia malayi.

Michelle Bailey; Chitra Chauhan; Canhui Liu; Thomas R. Unnasch

Previous studies of Brugia malayi promoters have suggested that they are unusual in that they lack the CAAT or TATAA boxes that are often emblematic of eucaryotic core promoter domains. Instead, the region surrounding the spliced leader (SL) addition site appears to function as the core promoter domain in B. malayi. To test the hypothesis that polymorphisms in this SL addition domain are important determinants of promoter activity, a series of domain swap mutants were prepared replacing the SL addition domain of the B. malayi 13kDa large subunit ribosomal protein (BmRPL13) with those of other ribosomal protein (RP) promoters exhibiting a wide range of activities. These constructs were then tested for promoter activity in a homologous transient transfection system. On average, polymorphisms in the SL addition domain were found to be responsible for 80% of the variation in promoter activity exhibited by the RP promoters tested. Essentially all of this effect could be attributable to polymorphisms in the 10nt located directly upstream of the SL addition site. A comparison of the sequence of this domain to the promoter activity exhibited by the domain swap mutants suggested that promoter activity was related to the number of T residues present in the coding strand of the upstream domain. Confirming this, mutation of the upstream domain of the promoter of the BmRPS4 gene to a homogeneous stretch of 10 T residues resulted in a significant increase in promoter activity.


PLOS Neglected Tropical Diseases | 2018

Development of a toolkit for piggyBac-mediated integrative transfection of the human filarial parasite Brugia malayi

Canhui Liu; Amruta S. Mhashilkar; Johan Chabanon; Shulin Xu; Sara Lustigman; John H. Adams; Thomas R. Unnasch

Background The human filarial parasites cause diseases that are among the most important causes of morbidity in the developing world. The elimination programs targeting these infections rely on a limited number of drugs, making the identification of new chemotherapeutic agents a high priority. The study of these parasites has lagged due to the lack of reverse genetic methods. Methodology/Principal findings We report a novel co-culture method that results in developmentally competent infective larvae of one of the human filarial parasites (Brugia malayi) and describe a method to efficiently transfect the larval stages of this parasite. We describe the production of constructs that result in integrative transfection using the piggyBac transposon system, and a selectable marker that can be used to identify transgenic parasites. We describe the production and use of dual reporter plasmids containing both a secreted luciferase selectable marker and fluorescent protein reporters that will be useful to study temporal and spatial patterns of gene expression. Conclusions/Significance The methods and constructs reported here will permit the efficient production of integrated transgenic filarial parasite lines, allowing reverse genetic technologies to be applied to all life cycle stages of the parasite.


International Journal for Parasitology | 2011

In vivo transfection of developmentally competent Brugia malayi infective larvae.

Shulin Xu; Canhui Liu; George Tzertzinis; Elodie Ghedin; Christopher C. Evans; Ray M. Kaplan; Thomas R. Unnasch


Molecular and Biochemical Parasitology | 2007

Sequences necessary for trans-splicing in transiently transfected Brugia malayi.

Canhui Liu; Ana de Oliveira; Tarig B. Higazi; Elodie Ghedin; Jay V. DePasse; Thomas R. Unnasch

Collaboration


Dive into the Canhui Liu's collaboration.

Top Co-Authors

Avatar

Thomas R. Unnasch

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chitra Chauhan

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana de Oliveira

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Shulin Xu

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge