Carlos Filipe Pereira
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos Filipe Pereira.
Genes & Development | 2009
Ana Banito; Sheikh Tamir Rashid; Juan Carlos Acosta; Si De Li; Carlos Filipe Pereira; Imbisaat Geti; Sandra Pinho; José C.R. Silva; Véronique Azuara; Martin J. Walsh; Ludovic Vallier; Jesús Gil
Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by overexpressing combinations of factors such as Oct4, Sox2, Klf4, and c-Myc. Reprogramming is slow and stochastic, suggesting the existence of barriers limiting its efficiency. Here we identify senescence as one such barrier. Expression of the four reprogramming factors triggers senescence by up-regulating p53, p16(INK4a), and p21(CIP1). Induction of DNA damage response and chromatin remodeling of the INK4a/ARF locus are two of the mechanisms behind senescence induction. Crucially, ablation of different senescence effectors improves the efficiency of reprogramming, suggesting novel strategies for maximizing the generation of iPS cells.
Cell Stem Cell | 2010
Carlos Filipe Pereira; Francesco M. Piccolo; Tomomi Tsubouchi; Stephan Sauer; Natalie K. Ryan; Ludovica Bruno; David Landeira; Joana Santos; Ana Banito; Jesús Gil; Haruhiko Koseki; Matthias Merkenschlager; Amanda G. Fisher
Embryonic stem cells (ESCs) are pluripotent, self-renewing, and have the ability to reprogram differentiated cell types to pluripotency upon cellular fusion. Polycomb-group (PcG) proteins are important for restraining the inappropriate expression of lineage-specifying factors in ESCs. To investigate whether PcG proteins are required for establishing, rather than maintaining, the pluripotent state, we compared the ability of wild-type, PRC1-, and PRC2-depleted ESCs to reprogram human lymphocytes. We show that ESCs lacking either PRC1 or PRC2 are unable to successfully reprogram B cells toward pluripotency. This defect is a direct consequence of the lack of PcG activity because it could be efficiently rescued by reconstituting PRC2 activity in PRC2-deficient ESCs. Surprisingly, the failure of PRC2-deficient ESCs to reprogram somatic cells is functionally dominant, demonstrating a critical requirement for PcG proteins in the chromatin-remodeling events required for the direct conversion of differentiated cells toward pluripotency.
PLOS Genetics | 2008
Carlos Filipe Pereira; Rémi Terranova; Natalie K. Ryan; Joana Santos; Kelly J. Morris; Wei Cui; Matthias Merkenschlager; Amanda G. Fisher
Differentiated cells can be reprogrammed through the formation of heterokaryons and hybrid cells when fused with embryonic stem (ES) cells. Here, we provide evidence that conversion of human B-lymphocytes towards a multipotent state is initiated much more rapidly than previously thought, occurring in transient heterokaryons before nuclear fusion and cell division. Interestingly, reprogramming of human lymphocytes by mouse ES cells elicits the expression of a human ES-specific gene profile, in which markers of human ES cells are expressed (hSSEA4, hFGF receptors and ligands), but markers that are specific to mouse ES cells are not (e.g., Bmp4 and LIF receptor). Using genetically engineered mouse ES cells, we demonstrate that successful reprogramming of human lymphocytes is independent of Sox2, a factor thought to be required for induced pluripotent stem (iPS) cells. In contrast, there is a distinct requirement for Oct4 in the establishment but not the maintenance of the reprogrammed state. Experimental heterokaryons, therefore, offer a powerful approach to trace the contribution of individual factors to the reprogramming of human somatic cells towards a multipotent state.
Genes & Development | 2009
Fabio Savarese; Amparo Dávila; Robert Nechanitzky; Inti A. De La Rosa-Velázquez; Carlos Filipe Pereira; Rudolf Engelke; Keiko Takahashi; Thomas Jenuwein; Terumi Kohwi-Shigematsu; Amanda G. Fisher; Rudolf Grosschedl
Satb1 and the closely related Satb2 proteins regulate gene expression and higher-order chromatin structure of multigene clusters in vivo. In examining the role of Satb proteins in murine embryonic stem (ES) cells, we find that Satb1(-/-) cells display an impaired differentiation potential and augmented expression of the pluripotency determinants Nanog, Klf4, and Tbx3. Metastable states of self-renewal and differentiation competence have been attributed to heterogeneity of ES cells in the expression of Nanog. Satb1(-/-) cultures have a higher proportion of Nanog(high) cells, and an increased potential to reprogram human B lymphocytes in cell fusion experiments. Moreover, Satb1-deficient ES cells show an increased expression of Satb2, and we find that forced Satb2 expression in wild-type ES cells antagonizes differentiation-associated silencing of Nanog and enhances the induction of NANOG in cell fusions with human B lymphocytes. An antagonistic function of Satb1 and Satb2 is also supported by the almost normal differentiation potential of Satb1(-/-)Satb2(-/-) ES cells. Taken together with the finding that both Satb1 and Satb2 bind the Nanog locus in vivo, our data suggest that the balance of Satb1 and Satb2 contributes to the plasticity of Nanog expression and ES cell pluripotency.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Miguel Fidalgo; Francesco Faiola; Carlos Filipe Pereira; Junjun Ding; Arven Saunders; Julian Gingold; Christoph Schaniel; Ihor R. Lemischka; José C.R. Silva; Jianlong Wang
The homeodomain transcription factor Nanog plays an important role in embryonic stem cell (ESC) self-renewal and is essential for acquiring ground-state pluripotency during reprogramming. Understanding how Nanog is transcriptionally regulated is important for further dissecting mechanisms of ESC pluripotency and somatic cell reprogramming. Here, we report that Nanog is subjected to a negative autoregulatory mechanism, i.e., autorepression, in ESCs, and that such autorepression requires the coordinated action of the Nanog partner and transcriptional repressor Zfp281. Mechanistically, Zfp281 recruits the NuRD repressor complex onto the Nanog locus and maintains its integrity to mediate Nanog autorepression and, functionally, Zfp281-mediated Nanog autorepression presents a roadblock to efficient somatic cell reprogramming. Our results identify a unique transcriptional regulatory mode of Nanog gene expression and shed light into the mechanistic understanding of Nanog function in pluripotency and reprogramming.
Journal of Cell Science | 2006
Rémi Terranova; Carlos Filipe Pereira; Camille Du Roure; Matthias Merkenschlager; Amanda G. Fisher
Although differentiated cells normally retain cell-type-specific gene expression patterns throughout their lifetime, cell identity can sometimes be modified or reversed in vivo by transdifferentiation, or experimentally through cell fusion or by nuclear transfer. To examine the epigenetic changes that are required for the dominant conversion of lymphocytes to muscle, we generated heterokaryons between human B lymphocytes and mouse C2C12 myotubes. We show that within 2 days of heterokaryon formation lymphocyte nuclei adopt an architecture resembling that of muscle and then initiate the expression of muscle-specific genes in the same temporal order as developing muscle. The establishment of this muscle-specific program is coordinated with the shutdown of several lymphocyte-associated genes. Interestingly, erasing lymphocyte identity in reprogrammed cells requires histone deacetylase (HDAC) activity. Inhibition of HDAC activity during reprogramming selectively blocks the silencing of lymphocyte-specific genes but does not prevent the establishment of muscle-specific gene expression. Successful reprogramming is therefore shown to be a multi-step process in which the acquisition and extinction of lineage-specific gene programs are separable events.
Current Pharmaceutical Design | 2004
Fernando A. Arosa; Carlos Filipe Pereira; Ana Mafalda Fonseca
T cell homeostasis is largely controlled by a balance between cell death and survival and anomalies in either process account for a number of diseases linked to excessive or faulty T cell growth. Yet, the influence that cells outside the immunological system have on these processes has only recently received attention. Accumulated evidence indicate that homeostasis of the CD4+ and CD8+ T cell pools is highly dynamic and regulated by signals delivered by cells and molecules present in the different internal microenvironments. The major function of red blood cells (RBC) is generally considered to be oxygen and carbon dioxide transport. In recent years, however, RBC have been implicated in the regulation of basic physiological processes, from vascular contraction and platelet aggregation to T cell growth and survival. Regulation of T cell survival by RBC may influence the response of selected subsets of T cells to internal or external stimuli and may help explaining the immunomodulatory activities of red blood cells. By interfering in the balance between death and survival RBC become potential tools that can be manipulated to improve or reverse pathological situations characterized by anomalies in the control of T cell growth.
Journal of Immunology | 2009
Margareta P. Correia; Elsa M. Cardoso; Carlos Filipe Pereira; Rui Neves; Markus Uhrberg; Fernando A. Arosa
Human intrahepatic lymphocytes are enriched in CD1d-unrestricted T cells coexpressing NKR. Although the origin of this population remains controversial, it is possible to speculate that the hepatic microenvironment, namely epithelial cells or the cytokine milieu, may play a role in its shaping. IL-15 is constitutively expressed in the liver and has a key role in activation and survival of innate and tissue-associated immune cells. In this in vitro study, we examined whether hepatocyte cell lines and/or IL-15 could play a role in the generation of NK-like T cells. The results show that both HepG2 cells and a human immortalized hepatocyte cell line increase survival and drive basal proliferation of T cells. In addition, IL-15 was capable of inducing Ag-independent up-regulation of NKR, including NKG2A, Ig-like receptors, and de novo expression of CD56 and NKp46 in CD8+CD56− T cells. In conclusion, our study suggests that hepatocytes and IL-15 create a favorable microenvironment for T cells to growth and survive. It can be proposed that the increased percentage of intrahepatic nonclassical NKT cells could be in part due to a local CD8+ T cell differentiation.
Stem cell reports | 2015
Avinash Waghray; Néstor Saiz; Anitha Jayaprakash; Ana G. Freire; Dmitri Papatsenko; Carlos Filipe Pereira; Dung Fang Lee; Ran Brosh; Betty Y. Chang; Henia Darr; Julian Gingold; Kevin Kelley; Christoph Schaniel; Anna-Katerina Hadjantonakis; Ihor R. Lemischka
Summary Tbx3, a member of the T-box family, plays important roles in development, stem cells, nuclear reprogramming, and cancer. Loss of Tbx3 induces differentiation in mouse embryonic stem cells (mESCs). However, we show that mESCs exist in an alternate stable pluripotent state in the absence of Tbx3. In-depth transcriptome analysis of this mESC state reveals Dppa3 as a direct downstream target of Tbx3. Also, Tbx3 facilitates the cell fate transition from pluripotent cells to mesoderm progenitors by directly repressing Wnt pathway members required for differentiation. Wnt signaling regulates differentiation of mESCs into mesoderm progenitors and helps to maintain a naive pluripotent state. We show that Tbx3, a downstream target of Wnt signaling, fine tunes these divergent roles of Wnt signaling in mESCs. In conclusion, we identify a signaling-TF axis that controls the exit of mESCs from a self-renewing pluripotent state toward mesoderm differentiation.
Cellular Immunology | 2003
Ana Mafalda Fonseca; Carlos Filipe Pereira; Graça Porto; Fernando A. Arosa
Red blood cells (RBC) are known to modulate T cell proliferation and function possibly through downregulation of oxidative stress. By examining parameters of activation, division, and cell death in vitro, we show evidence that the increase in survival afforded by RBC is due to the maintenance of the proliferative capacity of the activated T cells. We also show that the CD3+CD8+ T cell subset was preferentially expanded and rescued from apoptosis both in bulk peripheral blood lymphocyte cultures and with highly purified CD8+ T cells. The ability of RBC to induce survival of dividing T cells was not affected by blocking the CD58/CD2 interaction. Moreover, addition of hemoglobin, heme or protoporphyrin IX to cultures of activated T cells did not reproduce the effect of intact RBC. Considering that RBC circulate throughout the body, they could play a biological role in the modulation of T cell differentiation and survival in places of active cell division. Neither CD58 nor the heme compounds studied seem to play a direct relevant role in the modulation of T cell survival.