Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos M. G. A. Fontes is active.

Publication


Featured researches published by Carlos M. G. A. Fontes.


Annual Review of Biochemistry | 2010

Cellulosomes: Highly Efficient Nanomachines Designed to Deconstruct Plant Cell Wall Complex Carbohydrates

Carlos M. G. A. Fontes; Harry J. Gilbert

Cellulosomes can be described as one of natures most elaborate and highly efficient nanomachines. These cell bound multienzyme complexes orchestrate the deconstruction of cellulose and hemicellulose, two of the most abundant polymers on Earth, and thus play a major role in carbon turnover. Integration of cellulosomal components occurs via highly ordered protein:protein interactions between cohesins and dockerins, whose specificity allows the incorporation of cellulases and hemicellulases onto a molecular scaffold. Cellulosome assembly promotes the exploitation of enzyme synergism because of spatial proximity and enzyme-substrate targeting. Recent structural and functional studies have revealed how cohesin-dockerin interactions mediate both cellulosome assembly and cell-surface attachment, while retaining the spatial flexibility required to optimize the catalytic synergy within the enzyme complex. These emerging advances in our knowledge of cellulosome function are reviewed here.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex.

Ana Luísa Carvalho; Fernando M. V. Dias; José A. M. Prates; Tibor Nagy; Harry J. Gilbert; Gideon J. Davies; Luís M. A. Ferreira; Maria João Romão; Carlos M. G. A. Fontes

The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the “cellulosome,” for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose “cohesin” domains interact with corresponding “dockerin” domains of the enzymes. Here we report the structure of the cohesin–dockerin complex from Clostridium thermocellum at 2.2-Å resolution. The data show that the β-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop–helix–helix–loop–helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both “halves” of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of “polycellulosomes.” The structure provides an explanation for the lack of cross-species recognition between cohesin–dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies.


Journal of Biological Chemistry | 2004

The Mechanisms by which Family 10 Glycoside Hydrolases Bind Decorated Substrates

Gavin Pell; Edward J. Taylor; Tracey M. Gloster; Johan Turkenburg; Carlos M. G. A. Fontes; Luís M. A. Ferreira; Tibor Nagy; Samantha J. Clark; Gideon J. Davies; Harry J. Gilbert

Endo-β-1,4-xylanases (xylanases), which cleave β-1,4 glycosidic bonds in the xylan backbone, are important components of the repertoire of enzymes that catalyze plant cell wall degradation. The mechanism by which these enzymes are able to hydrolyze a range of decorated xylans remains unclear. Here we reveal the three-dimensional structure, determined by x-ray crystallography, and the catalytic properties of the Cellvibrio mixtus enzyme Xyn10B (CmXyn10B), the most active GH10 xylanase described to date. The crystal structure of the enzyme in complex with xylopentaose reveals that at the +1 subsite the xylose moiety is sandwiched between hydrophobic residues, which is likely to mediate tighter binding than in other GH10 xylanases. The crystal structure of the xylanase in complex with a range of decorated xylooligosaccharides reveals how this enzyme is able to hydrolyze substituted xylan. Solvent exposure of the O-2 groups of xylose at the +4, +3, +1, and -3 subsites may allow accommodation of the α-1,2-linked 4-O-methyl-d-glucuronic acid side chain in glucuronoxylan at these locations. Furthermore, the uronic acid makes hydrogen bonds and hydrophobic interactions with the enzyme at the +1 subsite, indicating that the sugar decorations in glucuronoxylan are targeted to this proximal aglycone binding site. Accommodation of 3′-linked l-arabinofuranoside decorations is observed in the -2 subsite and could, most likely, be tolerated when bound to xylosides in -3 and +4. A notable feature of the binding mode of decorated substrates is the way in which the subsite specificities are tailored both to prevent the formation of “dead-end” reaction products and to facilitate synergy with the xylan degradation-accessory enzymes such as α-glucuronidase. The data described in this report and in the accompanying paper (Fujimoto, Z., Kaneko, S., Kuno, A., Kobayashi, H., Kusakabe, I., and Mizuno, H. (2004) J. Biol. Chem. 279, 9606-9614) indicate that the complementarity in the binding of decorated substrates between the glycone and aglycone regions appears to be a conserved feature of GH10 xylanases.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Evidence for a dual binding mode of dockerin modules to cohesins

Ana Luísa Carvalho; Fernando M. V. Dias; Tibor Nagy; José A. M. Prates; Mark R. Proctor; Nicola Smith; Edward A. Bayer; Gideon J. Davies; Luís M. A. Ferreira; Maria João Romão; Carlos M. G. A. Fontes; Harry J. Gilbert

The assembly of proteins that display complementary activities into macromolecular complexes is critical to cellular function. One such enzyme complex, of environmental significance, is the plant cell wall degrading apparatus of anaerobic bacteria, termed the cellulosome. The complex assembles through the interaction of enzyme-derived “type I dockerin” modules with the multiple “cohesin” modules of the scaffolding protein. Clostridium thermocellum type I dockerin modules contain a duplicated 22-residue sequence that comprises helix-1 and helix-3, respectively. The crystal structure of a C. thermocellum type I cohesin-dockerin complex showed that cohesin recognition was predominantly through helix-3 of the dockerin. The sequence duplication is reflected in near-perfect 2-fold structural symmetry, suggesting that both repeats could interact with cohesins by a common mechanism in wild-type (WT) proteins. Here, a helix-3 disrupted mutant dockerin is used to visualize the reverse binding in which the dockerin mutant is indeed rotated 180° relative to the WT dockerin such that helix-1 now dominates recognition of its protein partner. The dual binding mode is predicted to impart significant plasticity into the orientation of the catalytic subunits within this supramolecular assembly, which reflects the challenges presented by the degradation of a heterogeneous, recalcitrant, insoluble substrate by a tethered macromolecular complex.


Journal of Biological Chemistry | 2006

Xyloglucan Is Recognized by Carbohydrate-binding Modules That Interact with β-Glucan Chains

Shabir Najmudin; Catarina I. P. D. Guerreiro; Ana Luísa Carvalho; José A. M. Prates; Márcia A. S. Correia; Victor D. Alves; Luís M. A. Ferreira; Maria João Romão; Harry J. Gilbert; David N. Bolam; Carlos M. G. A. Fontes

Enzyme systems that attack the plant cell wall contain noncatalytic carbohydrate-binding modules (CBMs) that mediate attachment to this composite structure and play a pivotal role in maximizing the hydrolytic process. Although xyloglucan, which includes a backbone of β-1,4-glucan decorated primarily with xylose residues, is a key component of the plant cell wall, CBMs that bind to this polymer have not been identified. Here we showed that the C-terminal domain of the modular Clostridium thermocellum enzyme CtCel9D-Cel44A (formerly known as CelJ) comprises a novel CBM (designated CBM44) that binds with equal affinity to cellulose and xyloglucan. We also showed that accommodation of xyloglucan side chains is a general feature of CBMs that bind to single cellulose chains. The crystal structures of CBM44 and the other CBM (CBM30) in CtCel9D-Cel44A display a β-sandwich fold. The concave face of both CBMs contains a hydrophobic platform comprising three tryptophan residues that can accommodate up to five glucose residues. The orientation of these aromatic residues is such that the bound ligand would adopt the twisted conformation displayed by cello-oligosaccharides in solution. Mutagenesis studies confirmed that the hydrophobic platform located on the concave face of both CBMs mediates ligand recognition. In contrast to other CBMs that bind to single polysaccharide chains, the polar residues in the binding cleft of CBM44 play only a minor role in ligand recognition. The mechanism by which these proteins are able to recognize linear and decorated β-1,4-glucans is discussed based on the structures of CBM44 and the other CBMs that bind single cellulose chains.


Journal of Biological Chemistry | 2001

The Location of the Ligand-binding Site of Carbohydrate-binding Modules That Have Evolved from a Common Sequence Is Not Conserved

Mirjam Czjzek; David N. Bolam; Amor Mosbah; Julie Allouch; Carlos M. G. A. Fontes; Luís M. A. Ferreira; Olivier Bornet; Véronique Zamboni; Hervé Darbon; Nicola Smith; Gary W. Black; Bernard Henrissat; Harry J. Gilbert

Polysaccharide-degrading enzymes are generally modular proteins that contain non-catalytic carbohydrate-binding modules (CBMs), which potentiate the activity of the catalytic module. CBMs have been grouped into sequence-based families, and three-dimensional structural data are available for half of these families. Clostridium thermocellum xylanase 11A is a modular enzyme that contains a CBM from family 6 (CBM6), for which no structural data are available. We have determined the crystal structure of this module to a resolution of 2.1 Å. The protein is a β-sandwich that contains two potential ligand-binding clefts designated cleft A and B. The CBM interacts primarily with xylan, and NMR spectroscopy coupled with site-directed mutagenesis identified cleft A, containing Trp-92, Tyr-34, and Asn-120, as the ligand-binding site. The overall fold of CBM6 is similar to proteins in CBM families 4 and 22, although surprisingly the ligand-binding site in CBM4 and CBM22 is equivalent to cleft B in CBM6. These structural data define a superfamily of CBMs, comprising CBM4, CBM6, and CBM22, and demonstrate that, although CBMs have evolved from a relatively small number of ancestors, the structural elements involved in ligand recognition have been assembled at different locations on the ancestral scaffold.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function

Cedric Montanier; Alicia Lammerts van Bueren; Claire Dumon; James E. Flint; Márcia A. S. Correia; José A. M. Prates; Susan J. Firbank; Richard J. Lewis; Gilles Grondin; Mariana Gabriela Ghinet; Tracey M. Gloster; Cécile Hervé; J. Paul Knox; Brian G. Talbot; Johan P. Turkenburg; Janne Kerovuo; Ryszard Brzezinski; Carlos M. G. A. Fontes; Gideon J. Davies; Alisdair B. Boraston; Harry J. Gilbert

Enzymes that hydrolyze complex carbohydrates play important roles in numerous biological processes that result in the maintenance of marine and terrestrial life. These enzymes often contain noncatalytic carbohydrate binding modules (CBMs) that have important substrate-targeting functions. In general, there is a tight correlation between the ligands recognized by bacterial CBMs and the substrate specificity of the appended catalytic modules. Through high-resolution structural studies, we demonstrate that the architecture of the ligand binding sites of 4 distinct family 35 CBMs (CBM35s), appended to 3 plant cell wall hydrolases and the exo-β-d-glucosaminidase CsxA, which contributes to the detoxification and metabolism of an antibacterial fungal polysaccharide, is highly conserved and imparts specificity for glucuronic acid and/or Δ4,5-anhydrogalaturonic acid (Δ4,5-GalA). Δ4,5-GalA is released from pectin by the action of pectate lyases and as such acts as a signature molecule for plant cell wall degradation. Thus, the CBM35s appended to the 3 plant cell wall hydrolases, rather than targeting the substrates of the cognate catalytic modules, direct their appended enzymes to regions of the plant that are being actively degraded. Significantly, the CBM35 component of CsxA anchors the enzyme to the bacterial cell wall via its capacity to bind uronic acid sugars. This latter observation reveals an unusual mechanism for bacterial cell wall enzyme attachment. This report shows that the biological role of CBM35s is not dictated solely by their carbohydrate specificities but also by the context of their target ligands.


Meat Science | 2010

Effect of cooking methods on fatty acids, conjugated isomers of linoleic acid and nutritional quality of beef intramuscular fat

Cristina M. Alfaia; Susana P. Alves; Anabela F. Lopes; Maria J. Fernandes; Ana S.H. Costa; Carlos M. G. A. Fontes; Matilde Castro; Rui J.B. Bessa; José A. M. Prates

The effect of boiling, microwaving and grilling on the composition and nutritional quality of beef intramuscular fat from cattle fed with two diets was investigated. Longissimus lumborum muscle from 15 Alentejano young bulls fed on concentrate or pasture was analyzed. Cooking losses and, consequently, total lipids, increased directly with the cooking time and internal temperature reached by meat (microwaving>boiling>grilling). The major changes in fatty acid composition, which implicated 16 out of 34 fatty acids, resulted in higher percentages in cooked beef of SFA and MUFA and lower proportions of PUFA, relative to raw meat, while conjugated linoleic acid (CLA) isomers revealed a great stability to thermal processes. Heating decreased the PUFA/SFA ratio of meat but did not change its n-6/n-3 index. Thermal procedures induced only slight oxidative changes in meat immediately after treatment but hardly affected the true retention values of its individual fatty acids (72-168%), including CLA isomers (81-128%).


Journal of Biological Chemistry | 2006

Structure and Activity of Two Metal Ion-dependent Acetylxylan Esterases Involved in Plant Cell Wall Degradation Reveals a Close Similarity to Peptidoglycan Deacetylases *

Edward J. Taylor; Tracey M. Gloster; Johan P. Turkenburg; Florence Vincent; A. Marek Brzozowski; Claude Dupont; François Shareck; Maria S. J. Centeno; José A. M. Prates; Vladimír Puchart; Luís M. A. Ferreira; Carlos M. G. A. Fontes; Peter Biely; Gideon J. Davies

The enzymatic degradation of plant cell wall xylan requires the concerted action of a diverse enzymatic syndicate. Among these enzymes are xylan esterases, which hydrolyze the O-acetyl substituents, primarily at the O-2 position of the xylan backbone. All acetylxylan esterase structures described previously display a α/β hydrolase fold with a “Ser-His-Asp” catalytic triad. Here we report the structures of two distinct acetylxylan esterases, those from Streptomyces lividans and Clostridium thermocellum, in native and complex forms, with x-ray data to between 1.6 and 1.0 Å resolution. We show, using a novel linked assay system with PNP-2-O-acetylxyloside and a β-xylosidase, that the enzymes are sugar-specific and metal ion-dependent and possess a single metal center with a chemical preference for Co2+. Asp and His side chains complete the catalytic machinery. Different metal ion preferences for the two enzymes may reflect the surprising diversity with which the metal ion coordinates residues and ligands in the active center environment of the S. lividans and C. thermocellum enzymes. These “CE4” esterases involved in plant cell wall degradation are shown to be closely related to the de-N-acetylases involved in chitin and peptidoglycan degradation (Blair, D. E., Schuettelkopf, A. W., MacRae, J. I., and Aalten, D. M. (2005) Proc. Natl. Acad. Sci. U. S. A., 102, 15429-15434), which form the NodB deacetylase “superfamily.”


Applied Microbiology and Biotechnology | 1995

The resistance of cellulases and xylanases to proteolytic inactivation.

Carlos M. G. A. Fontes; Judith Hall; Barry H. Hirst; Geoffrey P. Hazlewood; Harry J. Gilbert

The sensitivity of a range of cellulases and xylanases to proteolytic inactivation was investigated. The xylanases, all the Clostridium thermocellum cellulases and cellulase E from Pseudomonas fluorescens subsp. cellulosa exhibited no decrease in catalytic activity during a 3-h incubation with proteinases of the small intestine. Under these conditions, the control Escherichia coli enzymes analysed had half-lives of 4.3–13.5 min. The addition of substrate significantly decreased the sensitivity of proteinase-labile enzymes to inactivation. The significance of these data in relation to the use of cellulases and xylanases for improving animal nutrition is discussed.

Collaboration


Dive into the Carlos M. G. A. Fontes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arun Goyal

Indian Institute of Technology Guwahati

View shared research outputs
Top Co-Authors

Avatar

Maria João Romão

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge