Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro Bule is active.

Publication


Featured researches published by Pedro Bule.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition

Immacolata Venditto; Ana S. Luís; Maja G. Rydahl; Julia Schückel; Vânia O. Fernandes; Silvia Vidal-Melgosa; Pedro Bule; Arun Goyal; Virgínia M. R. Pires; C.G Dourado; L. M. A. Ferreira; Pedro M. Coutinho; Bernard Henrissat; J.P Knox; Arnaud Baslé; Shabir Najmudin; Harry J. Gilbert; William G. T. Willats; Carlos M. G. A. Fontes

Significance Plant cell wall (PCW) polysaccharide degradation is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Ruminococcus flavefaciens synthesizes a highly efficient PCW degrading apparatus. Here, six previously unidentified R. flavefaciens CBM families were identified that targeted β-glucans, β-mannans, and pectins. Crystal structures of these CBMs revealed that recognition of β-glucans and β-mannans was mediated by differences in the conformation of conserved aromatic residues in the ligand binding cleft. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan. This report shows that the expansion of protein modules in the cellulosome of R. flavefaciens contributes to an extended CBM profile that supports efficient PCW degradation. The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens. The data identified six previously unidentified CBM families that targeted β-glucans, β-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize β-glucans and β-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.


Journal of Biological Chemistry | 2015

Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors

Kate Cameron; Shabir Najmudin; Victor D. Alves; Edward A. Bayer; Steven P. Smith; Pedro Bule; Helen Waller; Luís M. A. Ferreira; Harry J. Gilbert; Carlos M. G. A. Fontes

Background: Cohesin-dockerin interactions support the binding of multienzyme complexes (cellulosomes) onto the cell surface. Results: The structures of novel Coh-Doc complexes reveal a dual binding mode. Conclusion: A dual binding mode is present in Coh-Doc interactions supporting cell-surface attachment. Significance: The dual binding mode introduces flexibility into highly populated multienzyme complexes attached to the cell surface. Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of natures most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼1012 m). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes.


Scientific Reports | 2017

Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions

Vered Israeli-Ruimy; Pedro Bule; Sadanari Jindou; Bareket Dassa; Sarah Moraïs; Ilya Borovok; Yoav Barak; Michal Slutzki; Yuval Hamberg; Vânia Cardoso; Victor D. Alves; Shabir Najmudin; Bryan A. White; Harry J. Flint; Harry J. Gilbert; Raphael Lamed; Carlos M. G. A. Fontes; Edward A. Bayer

Protein-protein interactions play a vital role in cellular processes as exemplified by assembly of the intricate multi-enzyme cellulosome complex. Cellulosomes are assembled by selective high-affinity binding of enzyme-borne dockerin modules to repeated cohesin modules of structural proteins termed scaffoldins. Recent sequencing of the fiber-degrading Ruminococcus flavefaciens FD-1 genome revealed a particularly elaborate cellulosome system. In total, 223 dockerin-bearing ORFs potentially involved in cellulosome assembly and a variety of multi-modular scaffoldins were identified, and the dockerins were classified into six major groups. Here, extensive screening employing three complementary medium- to high-throughput platforms was used to characterize the different cohesin-dockerin specificities. The platforms included (i) cellulose-coated microarray assay, (ii) enzyme-linked immunosorbent assay (ELISA) and (iii) in-vivo co-expression and screening in Escherichia coli. The data revealed a collection of unique cohesin-dockerin interactions and support the functional relevance of dockerin classification into groups. In contrast to observations reported previously, a dual-binding mode is involved in cellulosome cell-surface attachment, whereas single-binding interactions operate for cellulosome integration of enzymes. This sui generis cellulosome model enhances our understanding of the mechanisms governing the remarkable ability of R. flavefaciens to degrade carbohydrates in the bovine rumen and provides a basis for constructing efficient nano-machines applied to biological processes.


Scientific Reports | 2017

Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes

Pedro Bule; Victor D. Alves; Vered Israeli-Ruimy; Ana Luísa Carvalho; Luís M. A. Ferreira; Steven P. Smith; Harry J. Gilbert; Shabir Najmudin; Edward A. Bayer; Carlos M. G. A. Fontes

AbtractCellulosomes are sophisticated multi-enzymatic nanomachines produced by anaerobes to effectively deconstruct plant structural carbohydrates. Cellulosome assembly involves the binding of enzyme-borne dockerins (Doc) to repeated cohesin (Coh) modules located in a non-catalytic scaffoldin. Docs appended to cellulosomal enzymes generally present two similar Coh-binding interfaces supporting a dual-binding mode, which may confer increased positional adjustment of the different complex components. Ruminococcus flavefaciens’ cellulosome is assembled from a repertoire of 223 Doc-containing proteins classified into 6 groups. Recent studies revealed that Docs of groups 3 and 6 are recruited to the cellulosome via a single-binding mode mechanism with an adaptor scaffoldin. To investigate the extent to which the single-binding mode contributes to the assembly of R. flavefaciens cellulosome, the structures of two group 1 Docs bound to Cohs of primary (ScaA) and adaptor (ScaB) scaffoldins were solved. The data revealed that group 1 Docs display a conserved mechanism of Coh recognition involving a single-binding mode. Therefore, in contrast to all cellulosomes described to date, the assembly of R. flavefaciens cellulosome involves single but not dual-binding mode Docs. Thus, this work reveals a novel mechanism of cellulosome assembly and challenges the ubiquitous implication of the dual-binding mode in the acquisition of cellulosome flexibility.


Scientific Reports | 2016

Diverse specificity of cellulosome attachment to the bacterial cell surface

Joana L. A. Brás; Benedita A. Pinheiro; Kate Cameron; Fiona Cuskin; Aldino Viegas; Shabir Najmudin; Pedro Bule; Virgínia M. R. Pires; Maria João Romão; Edward A. Bayer; Holly L. Spencer; Steven P. Smith; Harry J. Gilbert; Victor D. Alves; Ana Luísa Carvalho; Carlos M. G. A. Fontes

During the course of evolution, the cellulosome, one of Nature’s most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly.


Journal of Biological Chemistry | 2015

Combined Crystal Structure of a Type-I Cohesin, Mutation and Affinity-Binding Studies Reveal Structural Determinants of Cohesin-Dockerin Specificity*

Kate Cameron; Jonathan Y. Weinstein; Olga Zhivin; Pedro Bule; Sarel J. Fleishman; Victor D. Alves; Harry J. Gilbert; Luís M. A. Ferreira; Carlos M. G. A. Fontes; Edward A. Bayer; Shabir Najmudin

Background: Cellulosomal cohesin-dockerin types are reversed in Bacteroides cellulosolvens. Results: Combined crystallographic and computational approaches of a lone cohesin yielded a structural model of the cohesin-dockerin complex that was verified experimentally. Conclusion: The dockerin dual-binding mode is not exclusive to enzyme integration into cellulosomes; it also characterizes cell-surface attachment. Significance: This combined approach provides a platform for generating testable hypotheses of the high affinity cohesin-dockerin interaction. Cohesin-dockerin interactions orchestrate the assembly of one of natures most elaborate multienzyme complexes, the cellulosome. Cellulosomes are produced exclusively by anaerobic microbes and mediate highly efficient hydrolysis of plant structural polysaccharides, such as cellulose and hemicellulose. In the canonical model of cellulosome assembly, type I dockerin modules of the enzymes bind to reiterated type I cohesin modules of a primary scaffoldin. Each type I dockerin contains two highly conserved cohesin-binding sites, which confer quaternary flexibility to the multienzyme complex. The scaffoldin also bears a type II dockerin that anchors the entire complex to the cell surface by binding type II cohesins of anchoring scaffoldins. In Bacteroides cellulosolvens, however, the organization of the cohesin-dockerin types is reversed, whereby type II cohesin-dockerin pairs integrate the enzymes into the primary scaffoldin, and type I modules mediate cellulosome attachment to an anchoring scaffoldin. Here, we report the crystal structure of a type I cohesin from B. cellulosolvens anchoring scaffoldin ScaB to 1.84-Å resolution. The structure resembles other type I cohesins, and the putative dockerin-binding site, centered at β-strands 3, 5, and 6, is likely to be conserved in other B. cellulosolvens type I cohesins. Combined computational modeling, mutagenesis, and affinity-based binding studies revealed similar hydrogen-bonding networks between putative Ser/Asp recognition residues in the dockerin at positions 11/12 and 45/46, suggesting that a dual-binding mode is not exclusive to the integration of enzymes into primary cellulosomes but can also characterize polycellulosome assembly and cell-surface attachment. This general approach may provide valuable structural information of the cohesin-dockerin interface, in lieu of a definitive crystal structure.


Archives of Biochemistry and Biophysics | 2015

The family 6 Carbohydrate Binding Module (CtCBM6) of glucuronoxylanase (CtXynGH30) of Clostridium thermocellum binds decorated and undecorated xylans through cleft A.

Anil Verma; Pedro Bule; T. Ribeiro; Joana L. A. Brás; Joyeeta Mukherjee; Munishwar N. Gupta; Carlos M. G. A. Fontes; Arun Goyal

CtCBM6 of glucuronoxylan-xylanohydrolase (CtXynGH30) from Clostridium thermocellum was cloned, expressed and purified as a soluble ~14 kDa protein. Quantitative binding analysis with soluble polysaccharides by affinity electrophoresis and ITC revealed that CtCBM6 displays similar affinity towards decorated and undecorated xylans by binding wheat- and rye-arabinoxylans, beechwood-, birchwood- and oatspelt-xylan. Protein melting studies confirmed thermostable nature of CtCBM6 and that Ca(2+) ions did not affect its structure stability and binding affinity significantly. The CtCBM6 structure was modeled and refined and CD spectrum displayed 44% β-strands supporting the predicted structure. CtCBM6 displays a jelly roll β-sandwich fold presenting two potential carbohydrate binding clefts, A and B. The cleft A, is located between two loops connecting β4-β5 and β8-β9 strands. Tyr28 and Phe84 present on these loops make a planar hydrophobic binding surface to accommodate sugar ring of ligand. The cleft B, is located on concave surface of β-sandwich fold. Tyr34 and Tyr104 make a planar hydrophobic platform, which may be inaccessible to ligand due to hindrance by Pro68. Site-directed mutagenesis revealed Tyr28 and Phe84 in cleft A, playing a major role in ligand binding. The results suggest that CtCBM6 interacts with carbohydrates through cleft A, which recognizes equally well both decorated and un-decorated xylans.


Acta Crystallographica Section D-biological Crystallography | 2016

Conservation in the mechanism of glucuronoxylan hydrolysis revealed by the structure of glucuronoxylan xylanohydrolase (CtXyn30A) from Clostridium thermocellum

Filipe Freire; Anil Verma; Pedro Bule; Victor D. Alves; Carlos M. G. A. Fontes; Arun Goyal; Shabir Najmudin

Glucuronoxylan endo-β-1,4-xylanases cleave the xylan chain specifically at sites containing 4-O-methylglucuronic acid substitutions. These enzymes have recently received considerable attention owing to their importance in the cooperative hydrolysis of heteropolysaccharides. However, little is known about the hydrolysis of glucuronoxylans in extreme environments. Here, the structure of a thermostable family 30 glucuronoxylan endo-β-1,4-xylanase (CtXyn30A) from Clostridium thermocellum is reported. CtXyn30A is part of the cellulosome, a highly elaborate multi-enzyme complex secreted by the bacterium to efficiently deconstruct plant cell-wall carbohydrates. CtXyn30A preferably hydrolyses glucuronoxylans and displays maximum activity at pH 6.0 and 70°C. The structure of CtXyn30A displays a (β/α)8 TIM-barrel core with a side-associated β-sheet domain. Structural analysis of the CtXyn30A mutant E225A, solved in the presence of xylotetraose, revealed xylotetraose-cleavage oligosaccharides partially occupying subsites -3 to +2. The sugar ring at the +1 subsite is held in place by hydrophobic stacking interactions between Tyr139 and Tyr200 and hydrogen bonds to the OH group of Tyr227. Although family 30 glycoside hydrolases are retaining enzymes, the xylopyranosyl ring at the -1 subsite of CtXyn30A-E225A appears in the α-anomeric configuration. A set of residues were found to be strictly conserved in glucuronoxylan endo-β-1,4-xylanases and constitute the molecular determinants of the restricted specificity displayed by these enzymes. CtXyn30A is the first thermostable glucuronoxylan endo-β-1,4-xylanase described to date. This work reveals that substrate recognition by both thermophilic and mesophilic glucuronoxylan endo-β-1,4-xylanases is modulated by a conserved set of residues.


Journal of Biological Chemistry | 2016

Single Binding Mode Integration of Hemicellulose-degrading Enzymes via Adaptor Scaffoldins in Ruminococcus flavefaciens Cellulosome

Pedro Bule; Victor D. Alves; André Leitão; Luís M. A. Ferreira; Edward A. Bayer; Steven P. Smith; Harry J. Gilbert; Shabir Najmudin; Carlos M. G. A. Fontes

The assembly of one of Natures most elaborate multienzyme complexes, the cellulosome, results from the binding of enzyme-borne dockerins to reiterated cohesin domains located in a non-catalytic primary scaffoldin. Generally, dockerins present two similar cohesin-binding interfaces that support a dual binding mode. The dynamic integration of enzymes in cellulosomes, afforded by the dual binding mode, is believed to incorporate additional flexibility in highly populated multienzyme complexes. Ruminococcus flavefaciens, the primary degrader of plant structural carbohydrates in the rumen of mammals, uses a portfolio of more than 220 different dockerins to assemble the most intricate cellulosome known to date. A sequence-based analysis organized R. flavefaciens dockerins into six groups. Strikingly, a subset of R. flavefaciens cellulosomal enzymes, comprising dockerins of groups 3 and 6, were shown to be indirectly incorporated into primary scaffoldins via an adaptor scaffoldin termed ScaC. Here, we report the crystal structure of a group 3 R. flavefaciens dockerin, Doc3, in complex with ScaC cohesin. Doc3 is unusual as it presents a large cohesin-interacting surface that lacks the structural symmetry required to support a dual binding mode. In addition, dockerins of groups 3 and 6, which bind exclusively to ScaC cohesin, display a conserved mechanism of protein recognition that is similar to Doc3. Groups 3 and 6 dockerins are predominantly appended to hemicellulose-degrading enzymes. Thus, single binding mode dockerins interacting with adaptor scaffoldins exemplify an evolutionary pathway developed by R. flavefaciens to recruit hemicellulases to the sophisticated cellulosomes acting in the gastrointestinal tract of mammals.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2014

Overexpression, purification, crystallization and preliminary X-ray characterization of the fourth scaffoldin A cohesin from Acetivibrio cellulolyticus in complex with a dockerin from a family 5 glycoside hydrolase.

Pedro Bule; Ana Maria Ramalho Correia; Kate Cameron; Victor D. Alves; Vânia Cardoso; Carlos M. G. A. Fontes; Shabir Najmudin

Cellulosomes are cell-bound multienzyme complexes secreted by anaerobic bacteria that play a crucial role in carbon turnover by degrading plant cell walls to simple sugars. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between cohesin modules located in a molecular scaffold and dockerin modules found in cellulosomal enzymes. Acetivibrio cellulolyticus possesses a complex cellulosome arrangement which is organized by a primary enzyme-binding scaffoldin (ScaA), two anchoring scaffoldins (ScaC and ScaD) and an unusual adaptor scaffoldin (ScaB). A dockerin from a family 5 glycoside hydrolase (GH5), which was engineered to inactivate one of the two putative cohesin-binding interfaces, complexed with one of the ScaA cohesins from A. cellulolyticus has been purified and crystallized, and data were processed to a resolution of 1.57 Å in the orthorhombic space group P212121.

Collaboration


Dive into the Pedro Bule's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward A. Bayer

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge