Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luís M. A. Ferreira is active.

Publication


Featured researches published by Luís M. A. Ferreira.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex.

Ana Luísa Carvalho; Fernando M. V. Dias; José A. M. Prates; Tibor Nagy; Harry J. Gilbert; Gideon J. Davies; Luís M. A. Ferreira; Maria João Romão; Carlos M. G. A. Fontes

The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the “cellulosome,” for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose “cohesin” domains interact with corresponding “dockerin” domains of the enzymes. Here we report the structure of the cohesin–dockerin complex from Clostridium thermocellum at 2.2-Å resolution. The data show that the β-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop–helix–helix–loop–helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both “halves” of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of “polycellulosomes.” The structure provides an explanation for the lack of cross-species recognition between cohesin–dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies.


Journal of Biological Chemistry | 2004

The Mechanisms by which Family 10 Glycoside Hydrolases Bind Decorated Substrates

Gavin Pell; Edward J. Taylor; Tracey M. Gloster; Johan Turkenburg; Carlos M. G. A. Fontes; Luís M. A. Ferreira; Tibor Nagy; Samantha J. Clark; Gideon J. Davies; Harry J. Gilbert

Endo-β-1,4-xylanases (xylanases), which cleave β-1,4 glycosidic bonds in the xylan backbone, are important components of the repertoire of enzymes that catalyze plant cell wall degradation. The mechanism by which these enzymes are able to hydrolyze a range of decorated xylans remains unclear. Here we reveal the three-dimensional structure, determined by x-ray crystallography, and the catalytic properties of the Cellvibrio mixtus enzyme Xyn10B (CmXyn10B), the most active GH10 xylanase described to date. The crystal structure of the enzyme in complex with xylopentaose reveals that at the +1 subsite the xylose moiety is sandwiched between hydrophobic residues, which is likely to mediate tighter binding than in other GH10 xylanases. The crystal structure of the xylanase in complex with a range of decorated xylooligosaccharides reveals how this enzyme is able to hydrolyze substituted xylan. Solvent exposure of the O-2 groups of xylose at the +4, +3, +1, and -3 subsites may allow accommodation of the α-1,2-linked 4-O-methyl-d-glucuronic acid side chain in glucuronoxylan at these locations. Furthermore, the uronic acid makes hydrogen bonds and hydrophobic interactions with the enzyme at the +1 subsite, indicating that the sugar decorations in glucuronoxylan are targeted to this proximal aglycone binding site. Accommodation of 3′-linked l-arabinofuranoside decorations is observed in the -2 subsite and could, most likely, be tolerated when bound to xylosides in -3 and +4. A notable feature of the binding mode of decorated substrates is the way in which the subsite specificities are tailored both to prevent the formation of “dead-end” reaction products and to facilitate synergy with the xylan degradation-accessory enzymes such as α-glucuronidase. The data described in this report and in the accompanying paper (Fujimoto, Z., Kaneko, S., Kuno, A., Kobayashi, H., Kusakabe, I., and Mizuno, H. (2004) J. Biol. Chem. 279, 9606-9614) indicate that the complementarity in the binding of decorated substrates between the glycone and aglycone regions appears to be a conserved feature of GH10 xylanases.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Evidence for a dual binding mode of dockerin modules to cohesins

Ana Luísa Carvalho; Fernando M. V. Dias; Tibor Nagy; José A. M. Prates; Mark R. Proctor; Nicola Smith; Edward A. Bayer; Gideon J. Davies; Luís M. A. Ferreira; Maria João Romão; Carlos M. G. A. Fontes; Harry J. Gilbert

The assembly of proteins that display complementary activities into macromolecular complexes is critical to cellular function. One such enzyme complex, of environmental significance, is the plant cell wall degrading apparatus of anaerobic bacteria, termed the cellulosome. The complex assembles through the interaction of enzyme-derived “type I dockerin” modules with the multiple “cohesin” modules of the scaffolding protein. Clostridium thermocellum type I dockerin modules contain a duplicated 22-residue sequence that comprises helix-1 and helix-3, respectively. The crystal structure of a C. thermocellum type I cohesin-dockerin complex showed that cohesin recognition was predominantly through helix-3 of the dockerin. The sequence duplication is reflected in near-perfect 2-fold structural symmetry, suggesting that both repeats could interact with cohesins by a common mechanism in wild-type (WT) proteins. Here, a helix-3 disrupted mutant dockerin is used to visualize the reverse binding in which the dockerin mutant is indeed rotated 180° relative to the WT dockerin such that helix-1 now dominates recognition of its protein partner. The dual binding mode is predicted to impart significant plasticity into the orientation of the catalytic subunits within this supramolecular assembly, which reflects the challenges presented by the degradation of a heterogeneous, recalcitrant, insoluble substrate by a tethered macromolecular complex.


Journal of Biological Chemistry | 2006

Xyloglucan Is Recognized by Carbohydrate-binding Modules That Interact with β-Glucan Chains

Shabir Najmudin; Catarina I. P. D. Guerreiro; Ana Luísa Carvalho; José A. M. Prates; Márcia A. S. Correia; Victor D. Alves; Luís M. A. Ferreira; Maria João Romão; Harry J. Gilbert; David N. Bolam; Carlos M. G. A. Fontes

Enzyme systems that attack the plant cell wall contain noncatalytic carbohydrate-binding modules (CBMs) that mediate attachment to this composite structure and play a pivotal role in maximizing the hydrolytic process. Although xyloglucan, which includes a backbone of β-1,4-glucan decorated primarily with xylose residues, is a key component of the plant cell wall, CBMs that bind to this polymer have not been identified. Here we showed that the C-terminal domain of the modular Clostridium thermocellum enzyme CtCel9D-Cel44A (formerly known as CelJ) comprises a novel CBM (designated CBM44) that binds with equal affinity to cellulose and xyloglucan. We also showed that accommodation of xyloglucan side chains is a general feature of CBMs that bind to single cellulose chains. The crystal structures of CBM44 and the other CBM (CBM30) in CtCel9D-Cel44A display a β-sandwich fold. The concave face of both CBMs contains a hydrophobic platform comprising three tryptophan residues that can accommodate up to five glucose residues. The orientation of these aromatic residues is such that the bound ligand would adopt the twisted conformation displayed by cello-oligosaccharides in solution. Mutagenesis studies confirmed that the hydrophobic platform located on the concave face of both CBMs mediates ligand recognition. In contrast to other CBMs that bind to single polysaccharide chains, the polar residues in the binding cleft of CBM44 play only a minor role in ligand recognition. The mechanism by which these proteins are able to recognize linear and decorated β-1,4-glucans is discussed based on the structures of CBM44 and the other CBMs that bind single cellulose chains.


Journal of Biological Chemistry | 2001

The Location of the Ligand-binding Site of Carbohydrate-binding Modules That Have Evolved from a Common Sequence Is Not Conserved

Mirjam Czjzek; David N. Bolam; Amor Mosbah; Julie Allouch; Carlos M. G. A. Fontes; Luís M. A. Ferreira; Olivier Bornet; Véronique Zamboni; Hervé Darbon; Nicola Smith; Gary W. Black; Bernard Henrissat; Harry J. Gilbert

Polysaccharide-degrading enzymes are generally modular proteins that contain non-catalytic carbohydrate-binding modules (CBMs), which potentiate the activity of the catalytic module. CBMs have been grouped into sequence-based families, and three-dimensional structural data are available for half of these families. Clostridium thermocellum xylanase 11A is a modular enzyme that contains a CBM from family 6 (CBM6), for which no structural data are available. We have determined the crystal structure of this module to a resolution of 2.1 Å. The protein is a β-sandwich that contains two potential ligand-binding clefts designated cleft A and B. The CBM interacts primarily with xylan, and NMR spectroscopy coupled with site-directed mutagenesis identified cleft A, containing Trp-92, Tyr-34, and Asn-120, as the ligand-binding site. The overall fold of CBM6 is similar to proteins in CBM families 4 and 22, although surprisingly the ligand-binding site in CBM4 and CBM22 is equivalent to cleft B in CBM6. These structural data define a superfamily of CBMs, comprising CBM4, CBM6, and CBM22, and demonstrate that, although CBMs have evolved from a relatively small number of ancestors, the structural elements involved in ligand recognition have been assembled at different locations on the ancestral scaffold.


Journal of Biological Chemistry | 2006

Structure and Activity of Two Metal Ion-dependent Acetylxylan Esterases Involved in Plant Cell Wall Degradation Reveals a Close Similarity to Peptidoglycan Deacetylases *

Edward J. Taylor; Tracey M. Gloster; Johan P. Turkenburg; Florence Vincent; A. Marek Brzozowski; Claude Dupont; François Shareck; Maria S. J. Centeno; José A. M. Prates; Vladimír Puchart; Luís M. A. Ferreira; Carlos M. G. A. Fontes; Peter Biely; Gideon J. Davies

The enzymatic degradation of plant cell wall xylan requires the concerted action of a diverse enzymatic syndicate. Among these enzymes are xylan esterases, which hydrolyze the O-acetyl substituents, primarily at the O-2 position of the xylan backbone. All acetylxylan esterase structures described previously display a α/β hydrolase fold with a “Ser-His-Asp” catalytic triad. Here we report the structures of two distinct acetylxylan esterases, those from Streptomyces lividans and Clostridium thermocellum, in native and complex forms, with x-ray data to between 1.6 and 1.0 Å resolution. We show, using a novel linked assay system with PNP-2-O-acetylxyloside and a β-xylosidase, that the enzymes are sugar-specific and metal ion-dependent and possess a single metal center with a chemical preference for Co2+. Asp and His side chains complete the catalytic machinery. Different metal ion preferences for the two enzymes may reflect the surprising diversity with which the metal ion coordinates residues and ligands in the active center environment of the S. lividans and C. thermocellum enzymes. These “CE4” esterases involved in plant cell wall degradation are shown to be closely related to the de-N-acetylases involved in chitin and peptidoglycan degradation (Blair, D. E., Schuettelkopf, A. W., MacRae, J. I., and Aalten, D. M. (2005) Proc. Natl. Acad. Sci. U. S. A., 102, 15429-15434), which form the NodB deacetylase “superfamily.”


Molecular Microbiology | 1990

The N‐terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulose‐binding domain that is distinct from the catalytic centre

Harry J. Gilbert; Judith Hall; Geoffrey P. Hazlewood; Luís M. A. Ferreira

The substrate specificity of an endoglucanase (EGB) from Pseudomonas fluorescens subspecies cellulosa was determined. The enzyme was most active against barley β‐glucan, but showed significant activity against amorphous and crystalline cellulose. EGB was purified to homogeneity by affinity chromatography with crystalline cellulose (Avicel). The Mr of the purified enzyme was 50000, which is in good agreement with the size of EGB deduced from the nucleotide sequence of the celB gene, coding for EGB. The N‐terminal region of the mature form of EGB showed strong homology to another endoglucanase and to a xylanase expressed by the same organism; homologous sequences included highly conserved serine‐rich regions. Truncated forms of celB, in which the gene sequence encoding the conserved domain had been deleted, directed the synthesis of a functional endoglucanase that did not bind to crystalline cellulose. This indicates that the conserved region of endoglucanases and xylanases expressed by P. fluorescens subsp. cellulosa constitutes a cellulose‐binding domain, which is distinct from the active centre. The possible role of this substrate‐binding region is discussed.


Journal of Biological Chemistry | 2006

Crystal Structures of Clostridium thermocellum Xyloglucanase, XGH74A, Reveal the Structural Basis for Xyloglucan Recognition and Degradation

Carlos Martinez-Fleites; Catarina I. P. D. Guerreiro; Martin J. Baumann; Edward J. Taylor; José A. M. Prates; Luís M. A. Ferreira; Carlos M. G. A. Fontes; Harry Brumer; Gideon J. Davies

The enzymatic degradation of the plant cell wall is central both to the natural carbon cycle and, increasingly, to environmentally friendly routes to biomass conversion, including the production of biofuels. The plant cell wall is a complex composite of cellulose microfibrils embedded in diverse polysaccharides collectively termed hemicelluloses. Xyloglucan is one such polysaccharide whose hydrolysis is catalyzed by diverse xyloglucanases. Here we present the structure of the Clostridium thermocellum xyloglucanase Xgh74A in both apo and ligand-complexed forms. The structures, in combination with mutagenesis data on the catalytic residues and the kinetics and specificity of xyloglucan hydrolysis reveal a complex subsite specificity accommodating seventeen monosaccharide moieties of the multibranched substrate in an open substrate binding terrain.


Journal of Bacteriology | 2002

The Membrane-Bound α-Glucuronidase from Pseudomonas cellulosa Hydrolyzes 4-O-Methyl-d-Glucuronoxylooligosaccharides but Not 4-O-Methyl-d-Glucuronoxylan

Tibor Nagy; Kaveh Emami; Carlos M. G. A. Fontes; Luís M. A. Ferreira; David R. Humphry; Harry J. Gilbert

The microbial degradation of xylan is a key biological process. Hardwood 4-O-methyl-D-glucuronoxylans are extensively decorated with 4-O-methyl-D-glucuronic acid, which is cleaved from the polysaccharides by alpha-glucuronidases. In this report we describe the primary structures of the alpha-glucuronidase from Cellvibrio mixtus (C. mixtus GlcA67A) and the alpha-glucuronidase from Pseudomonas cellulosa (P. cellulosa GlcA67A) and characterize P. cellulosa GlcA67A. The primary structures of C. mixtus GlcA67A and P. cellulosa GlcA67A, which are 76% identical, exhibit similarities with alpha-glucuronidases in glycoside hydrolase family 67. The membrane-associated pseudomonad alpha-glucuronidase released 4-O-methyl-D-glucuronic acid from 4-O-methyl-D-glucuronoxylooligosaccharides but not from 4-O-methyl-D-glucuronoxylan. We propose that the role of the glucuronidase, in combination with cell-associated xylanases, is to hydrolyze decorated xylooligosaccharides, generated by extracellular hemicellulases, to xylose and 4-O-methyl-D-glucuronic acid, enabling the pseudomonad to preferentially utilize the sugars derived from these polymers.


Journal of Bacteriology | 2002

Evidence for Temporal Regulation of the Two Pseudomonas cellulosa Xylanases Belonging to Glycoside Hydrolase Family 11

Kaveh Emami; Tibor Nagy; Carlos M. G. A. Fontes; Luís M. A. Ferreira; Harry J. Gilbert

Pseudomonas cellulosa is a highly efficient xylan-degrading bacterium. Genes encoding five xylanases, and several accessory enzymes, which remove the various side chains that decorate the xylan backbone, have been isolated from the pseudomonad and characterized. The xylanase genes consist of xyn10A, xyn10B, xyn10C, xyn10D, and xyn11A, which encode Xyn10A, Xyn10B, Xyn10C, Xyn10D, and Xyn11A, respectively. In this study a sixth xylanase gene, xyn11B, was isolated which encodes a 357-residue modular enzyme, designated Xyn11B, comprising a glycoside hydrolase family 11 catalytic domain appended to a C-terminal X-14 module, a homologue of which binds to xylan. Localization studies showed that the two xylanases with glycoside hydrolase family (GH) 11 catalytic modules, Xyn11A and Xyn11B, are secreted into the culture medium, whereas Xyn10C is membrane bound. xyn10C, xyn10D, xyn11A, and xyn11B were all abundantly expressed when the bacterium was cultured on xylan or beta-glucan but not on medium containing mannan, whereas glucose repressed transcription of these genes. Although all of the xylanase genes were induced by the same polysaccharides, temporal regulation of xyn11A and xyn11B was apparent on xylan-containing media. Transcription of xyn11A occurred earlier than transcription of xyn11B, which is consistent with the predicted mode of action of the encoded enzymes. Xyn11A, but not Xyn11B, exhibits xylan esterase activity, and the removal of acetate side chains is required for xylanases to hydrolyze the xylan backbone. A transposon mutant of P. cellulosa in which xyn11A and xyn11B were inactive displayed greatly reduced extracellular but normal cell-associated xylanase activity, and its growth rate on medium containing xylan was indistinguishable from wild-type P. cellulosa. Based on the data presented here, we propose a model for xylan degradation by P. cellulosa in which the GH11 enzymes convert decorated xylans into substituted xylooligosaccharides, which are then hydrolyzed to their constituent sugars by the combined action of cell-associated GH10 xylanases and side chain-cleaving enzymes.

Collaboration


Dive into the Luís M. A. Ferreira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria João Romão

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward A. Bayer

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge