Carmen L. Perera
Grupo México
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carmen L. Perera.
Journal of Virological Methods | 2011
Lester J. Pérez; Heidy Díaz de Arce; Joan Tarradas; Rosa Rosell; Carmen L. Perera; Marta Muñoz; María Teresa Frías; José I. Núñez; Llilianne Ganges
Classical swine fever is a highly contagious viral disease that causes significant economic losses in pig production on a global scale. The rapid dissemination of the virus and the variability of the clinical signs merit the development of swift and accurate classical swine fever virus (CSFV) detection methods, which can assist in disease control. The development and evaluation of a novel quantitative real-time RT-PCR assay for CSFV detection, based on SYBR Green coupled to melting curve analysis, is described. The analytical and diagnostic performances of the method using two real-time PCR instruments were compared. The assay was specific and detected the major genotypes of CSFV. The limit of detection in cell culture medium and serum was 0.1 TCID50/reaction, while in tissue homogenate for both platforms, it was 1 TCID50/reaction. The limit of detection was 1, 10 and 10² gene copies/μL when nuclease-free water, serum and tissue homogenate, respectively, were used as sample matrices for both instruments. The analysis of 108 tissue homogenate and serum samples from animals infected with CSFV naturally and experimentally and non-infected animals showed that the assay provided a highly sensitive and specific method for classical swine fever.
Journal of Virological Methods | 2012
Lester J. Pérez; Carmen L. Perera; María Teresa Frías; José I. Núñez; Llilianne Ganges; Heidy Díaz de Arce
Multiple viral infections are common in pigs under intensive production conditions. All five of the viruses included in this study are associated with multifactorial diseases that cause significant economic losses in swine farming worldwide. The development is described of a novel multiple real-time PCR system based on the use of SYBR Green I that allows the simultaneous detection and differentiation of porcine circovirus 2 (PCV-2), porcine parvovirus (PPV), pseudorabies virus (PRV) and Torque teno sus virus species 1 and 2 (TTSuV1 and TTSuV2) in pigs. The method was able to distinguish between all five viral agents, and tests of other DNA viruses proved the specificity of the system. The multiple real-time PCR system was sensitive, as the limits of detection ranged from 3.65×10(3) to 5.04×10(3) copies of DNA template per reaction. The coefficients of variation were low for both intra-assay and inter-assay variability. In addition, the results of the multiple real-time PCR system tests were 100% consistent with previous results based on specific PCR assay testing of field samples. This method could be a useful tool for epidemiological studies and disease management.
Veterinary Microbiology | 2011
Lester J. Pérez; Heidy Díaz de Arce; Martí Cortey; Patricia Domínguez; María Irian Percedo; Carmen L. Perera; Joan Tarradas; María Teresa Frías; Joaquim Segalés; Llilianne Ganges; José I. Núñez
Porcine circovirus type 2 (PCV2) is the essential etiological infectious agent of postweaning multisystemic wasting syndrome (PMWS), which is considered one of the most economically important swine diseases worldwide. In this study, a comparison between methodologies based on classical phylogenetic trees and networks to infer the origin of PCV2 in Cuba was performed. In addition, the mechanisms supporting the genetic variability of Cuban PCV2 populations were investigated. A retrospective study, using pig sera collected in Cuba from 1993 to 2004, to evaluate the presence of PCV2 genome and PCV2-specific antibodies was also conducted and revealed a lack of evidence of PCV2 infection in Cuban swine from years 1993 to 2004. A total of 24 complete Cuban PCV2 sequences collected between 2005 and 2009 from different regions of the country were analyzed. Three classical methods of phylogenetic analysis, namely Neighbour-Joining, Maximum Parsimony and Bayesian Inference, as well as haplotype network construction, were used. Whereas the classical phylogenetic trees suggested different origins for the Cuban PCV2 strains, the haplotype network revealed a direct connection between all the Cuban sequences in agreement with the obtained epidemiological and viral sequence data. Moreover, the importation of pigs carried out in 2005 from the Quebec-Ontario region, Canada, seems to be the most likely origin of PCV2 in Cuba. Likewise, the genetic variability of Cuban PCV2 sequences was supported by geographic segregation and positive selection pressure with estimated rates of nucleotide substitution on the order of 3.12×10(-3) and 6.57×10(-3) substitutions/site/year, which are closer to those reported for RNA viruses.
Research in Veterinary Science | 2011
Lester J. Pérez; Heidy Díaz de Arce; María Teresa Frías; Carmen L. Perera; Llilianne Ganges; José I. Núñez
In this study, 40 pigs with respiratory and wasting disorders from Cuban swine herds were screened by PCR for the presence of TTSuV1, TTSuV2, PCV-2, PPV and CSFV in spleen samples. The variability of the porcine TTSuV sequences obtained was investigated by phylogenetic analysis. This study showed for the first time that TTSuV1 and TTSuV2 were present in Cuban swine herds. The investigation revealed the following infection rates: TTSuV1 40%, TTSuV2 37.5%, PCV-2 70%, PPV 37.5% and CSFV in 52.5%. The presence of two or more of these viruses at different rates in the same spleen samples was revealed. Also, a higher genetic diversity of TTSuV2 sequences was observed regarding TTSuV1 sequences.
Molecular and Cellular Probes | 2013
Ana María Acevedo; Carmen L. Perera; Armando Vega; Liliam Rios; Liani Coronado; Damarys Relova; María Teresa Frías; Llilianne Ganges; José I. Núñez; Lester J. Pérez
Infectious bronchitis is a highly contagious viral disease of poultry caused by infectious bronchitis virus (IBV) and is considered one of the most economically important viral diseases of chickens. Control of IBV has been attempted using live attenuated and inactivated vaccines. Live attenuated vaccines of the Massachusetts (Mass.) serotype are the most commonly used for this purpose. Due to the continuous emergence of new variants of the infectious bronchitis virus, the identification of the type of IBV causing an outbreak in commercial poultry is important in the selection of the appropriate vaccine(s) capable of inducing a protective immune response. The present work was aimed at developing and evaluating a duplex SYBR Green I-based real-time RT-PCR (rRT-PCR) assay for the simultaneous detection and differentiation of Mass. and non-Mass. serotypes of IBV. The duplex rRT-PCR yielded curves of amplification with two specific melting curves (Tm1 = 83 °C ± 0.5 °C and Tm2 = 87 °C ± 0.5 °C) and only one specific melting peak (Tm = 87 °C ± 0.5 °C) when the IBV Mass. serotype and IBV non-Mass. serotype strains were evaluated, respectively. The detection limit of the assay was 8.2 gene copies/μL based on in vitro transcribed RNA and 0.1 EID50/mL. The assay was able to detect all the IBV strains assessed and discriminated well among the IBV Mass. and the IBV non-Mass. serotypes strains. In addition, amplification curves were not obtained with any of the other viruses tested. From the 300 field samples tested, the duplex rRT-PCR yielded a total of 80 samples that were positive for IBV (26.67%), 73 samples identified as the IBV Mass. serotype and seven samples as identified as the IBV non-Mass. serotype. A comparison of the performance of test as assessed with field samples revealed that the duplex rRT-PCR detected a higher number of IBV-positive samples than when conventional RT-PCR or virus isolation tests were used. The duplex rRT-PCR presented here is a useful tool for the rapid identification of outbreaks and for surveillance programmes during IB-suspected cases, particularly in countries with a vaccination control programme.
PLOS ONE | 2013
Abdulahi Alfonso-Morales; Orlando Martínez-Pérez; Roser Dolz; Rosa Valle; Carmen L. Perera; Kateri Bertran; María Teresa Frías; Natàlia Majó; Llilianne Ganges; Lester J. Pérez
Background Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Methodology/Principal Findings Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. Conclusions/Significance To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide.
PLOS ONE | 2015
Abdulahi Alfonso-Morales; Liliam Rios; Orlando Martínez-Pérez; Roser Dolz; Rosa Valle; Carmen L. Perera; Kateri Bertran; María Teresa Frías; Llilianne Ganges; Heidy Díaz de Arce; Natàlia Majó; José I. Núñez; Lester J. Pérez
Background Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Methodology/Principal Findings Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. Conclusions/Significance This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular epidemiology studies.
Archives of Virology | 2015
Alexander Postel; Lester J. Pérez; Carmen L. Perera; Stefanie Schmeiser; Denise Meyer; Alexandra Meindl-Boehmer; Liliam Rios; Sophia Austermann-Busch; María T. Frías-Lepoureau; Paul Becher
Classical swine fever (CSF) is a devastating animal disease of great economic impact worldwide. In many countries, CSF has been endemic for decades, and vaccination of domestic pigs is one of the measures to control the disease. Consequently, differentiating infected from vaccinated animals by antibody ELISA screening is not applicable. In some countries, such as Cuba, lack of molecular techniques for sensitive, rapid and reliable detection of virus genomes is a critical point. To overcome this problem, an easy-to-use one-tube assay based on the loop-mediated isothermal amplification (LAMP) principle has been developed for detection of the genome of CSF virus (CSFV) of endemic Cuban genotype 1.4 isolates. The assay reliably detected recent isolates from three different regions of Cuba with an analytical sensitivity 10-100 times lower than that of quantitative reverse transcription RT-qPCR. Diagnostic test sensitivity was examined using reference sera from two groups of pigs experimentally infected with Cuban virulent strain CSF0705 “Margarita” and the recent field isolate CSF1058 “Pinar del Rio”. Differences in pathogenicity of the two viruses were reflected in the clinical course of disease as well as in virus loads of blood samples. Low viral RNA loads in samples from pigs infected with the field isolate caused serious detection problems in RT-LAMP as well as in RT-qPCR. Thus, it will be necessary in future research to focus on targeted sampling of diseased animals and to restrict diagnosis to the herd level in order to establish LAMP as an efficient tool for diagnosing CSF under field conditions.
Research in Veterinary Science | 2013
Lester J. Pérez; Carmen L. Perera; Armando Vega; María Teresa Frías; Dagmar Rouseaux; Llilianne Ganges; José I. Núñez; Heidy Díaz de Arce
The emergence of the pandemic H1N1/2009 influenza virus poses a potential global threat for human and animal health. In this study, we carried out pandemic H1N1/2009 influenza virus surveillance in swine herds in Cuba intending to determine whether the virus was circulating among pig populations. As a result we describe, for the first time, the detection of pandemic H1N1/2009 influenza virus in swine herds in Cuba. In addition, phylogenetic analysis and molecular characterization of three viral isolates were performed. Phylogenetic relationships confirmed that all of the eight genes of the three isolates were derived from the pandemic H1N1/2009 virus. The Cuban isolates, formed an independent cluster within the pandemic H1N1/2009 influenza strains. Different molecular markers, previously described in pandemic H1N1/2009 influenza viruses, related with adaptive evolution, viral evasion from the host-immune response, virulence and dissemination were also present in Cuban pandemic H1N1/2009 isolates.
Scientific Reports | 2017
Liliam Rios; Liani Coronado; Dany Naranjo-Feliciano; Orlando Martínez-Pérez; Carmen L. Perera; Lilian Hernandez-Alvarez; Heidy Díaz de Arce; José I. Núñez; Llilianne Ganges; Lester J. Pérez
Classical swine fever (CSF) is one of the most important infectious diseases causing significant economic losses. Its causal agent, CSF virus (CSFV), is a member of the Pestivirus genus included into the Flaviviridae family. Previous molecular epidemiology studies have revealed the CSFV diversity is divided into three main genotypes and different subgenotypes. However, the classification system for CSFV has not yet been harmonized internationally. Similarly, the phylogeny and evolutionary dynamics of CSFV remain unclear. The current study provides novel and significant insights into the origin, diversification and evolutionary process of CSFV. In addition, the best phylogenetic marker for CSFV capable of reproducing the same phylogenetic and evolutionary information as the complete viral genome is characterized. Also, a reliable cut-off to accurately classify CSFV at genotype and subgenotype levels is established. Based on the time for the most recent common ancestor (tMRCA) reconstruction and cophylogenetic analysis, it was determined that CSFV emerged around 225 years ago when the Tunisian Sheep Virus jumped from its natural host to swine. CSFV emergence was followed by a genetic expansion in three main lineages, driven by the action of positive selection pressure and functional divergence, as main natural forces.