Heidy Díaz de Arce
Hospital Italiano de Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heidy Díaz de Arce.
Virus Research | 1999
Heidy Díaz de Arce; José I. Núñez; Llilianne Ganges; Maritza Barreras; María Teresa Frías; Francisco Sobrino
The origin and evolution of the classical swine fever (CSF) epizootic that occurred in Cuba from 1993 to 1997 has been investigated by the analysis of E2 gene sequences from 15 representative viral isolates as well as the vaccine and the challenge strains used in this country. In the phylogenetic tree derived from these sequences, the Cuban isolates were located in a defined cluster within the previously reported genomic subgroup 1.2. This cluster was related, although distinguishable, from the live vaccine used in Cuba since 1965. Two further groups were identified. One of them included the early viruses isolated in the western part of Cuba until 1996 and the strain Margarita, used for vaccine potency tests since 1965. These results are consistent with the strain Margarita being the origin of the western outbreaks. The viruses isolated from 1996 in eastern Cuba defined a related, but independent group. The level of sequence variation observed in this group does not exclude an independent origin for the eastern isolates.
Journal of Virological Methods | 2011
Lester J. Pérez; Heidy Díaz de Arce; Joan Tarradas; Rosa Rosell; Carmen L. Perera; Marta Muñoz; María Teresa Frías; José I. Núñez; Llilianne Ganges
Classical swine fever is a highly contagious viral disease that causes significant economic losses in pig production on a global scale. The rapid dissemination of the virus and the variability of the clinical signs merit the development of swift and accurate classical swine fever virus (CSFV) detection methods, which can assist in disease control. The development and evaluation of a novel quantitative real-time RT-PCR assay for CSFV detection, based on SYBR Green coupled to melting curve analysis, is described. The analytical and diagnostic performances of the method using two real-time PCR instruments were compared. The assay was specific and detected the major genotypes of CSFV. The limit of detection in cell culture medium and serum was 0.1 TCID50/reaction, while in tissue homogenate for both platforms, it was 1 TCID50/reaction. The limit of detection was 1, 10 and 10² gene copies/μL when nuclease-free water, serum and tissue homogenate, respectively, were used as sample matrices for both instruments. The analysis of 108 tissue homogenate and serum samples from animals infected with CSFV naturally and experimentally and non-infected animals showed that the assay provided a highly sensitive and specific method for classical swine fever.
Journal of Virological Methods | 2012
Lester J. Pérez; Carmen L. Perera; María Teresa Frías; José I. Núñez; Llilianne Ganges; Heidy Díaz de Arce
Multiple viral infections are common in pigs under intensive production conditions. All five of the viruses included in this study are associated with multifactorial diseases that cause significant economic losses in swine farming worldwide. The development is described of a novel multiple real-time PCR system based on the use of SYBR Green I that allows the simultaneous detection and differentiation of porcine circovirus 2 (PCV-2), porcine parvovirus (PPV), pseudorabies virus (PRV) and Torque teno sus virus species 1 and 2 (TTSuV1 and TTSuV2) in pigs. The method was able to distinguish between all five viral agents, and tests of other DNA viruses proved the specificity of the system. The multiple real-time PCR system was sensitive, as the limits of detection ranged from 3.65×10(3) to 5.04×10(3) copies of DNA template per reaction. The coefficients of variation were low for both intra-assay and inter-assay variability. In addition, the results of the multiple real-time PCR system tests were 100% consistent with previous results based on specific PCR assay testing of field samples. This method could be a useful tool for epidemiological studies and disease management.
Veterinary Microbiology | 2011
Lester J. Pérez; Heidy Díaz de Arce; Martí Cortey; Patricia Domínguez; María Irian Percedo; Carmen L. Perera; Joan Tarradas; María Teresa Frías; Joaquim Segalés; Llilianne Ganges; José I. Núñez
Porcine circovirus type 2 (PCV2) is the essential etiological infectious agent of postweaning multisystemic wasting syndrome (PMWS), which is considered one of the most economically important swine diseases worldwide. In this study, a comparison between methodologies based on classical phylogenetic trees and networks to infer the origin of PCV2 in Cuba was performed. In addition, the mechanisms supporting the genetic variability of Cuban PCV2 populations were investigated. A retrospective study, using pig sera collected in Cuba from 1993 to 2004, to evaluate the presence of PCV2 genome and PCV2-specific antibodies was also conducted and revealed a lack of evidence of PCV2 infection in Cuban swine from years 1993 to 2004. A total of 24 complete Cuban PCV2 sequences collected between 2005 and 2009 from different regions of the country were analyzed. Three classical methods of phylogenetic analysis, namely Neighbour-Joining, Maximum Parsimony and Bayesian Inference, as well as haplotype network construction, were used. Whereas the classical phylogenetic trees suggested different origins for the Cuban PCV2 strains, the haplotype network revealed a direct connection between all the Cuban sequences in agreement with the obtained epidemiological and viral sequence data. Moreover, the importation of pigs carried out in 2005 from the Quebec-Ontario region, Canada, seems to be the most likely origin of PCV2 in Cuba. Likewise, the genetic variability of Cuban PCV2 sequences was supported by geographic segregation and positive selection pressure with estimated rates of nucleotide substitution on the order of 3.12×10(-3) and 6.57×10(-3) substitutions/site/year, which are closer to those reported for RNA viruses.
Research in Veterinary Science | 2011
Lester J. Pérez; Heidy Díaz de Arce; María Teresa Frías; Carmen L. Perera; Llilianne Ganges; José I. Núñez
In this study, 40 pigs with respiratory and wasting disorders from Cuban swine herds were screened by PCR for the presence of TTSuV1, TTSuV2, PCV-2, PPV and CSFV in spleen samples. The variability of the porcine TTSuV sequences obtained was investigated by phylogenetic analysis. This study showed for the first time that TTSuV1 and TTSuV2 were present in Cuban swine herds. The investigation revealed the following infection rates: TTSuV1 40%, TTSuV2 37.5%, PCV-2 70%, PPV 37.5% and CSFV in 52.5%. The presence of two or more of these viruses at different rates in the same spleen samples was revealed. Also, a higher genetic diversity of TTSuV2 sequences was observed regarding TTSuV1 sequences.
Research in Veterinary Science | 2010
Lester J. Pérez; Heidy Díaz de Arce; María Irian Percedo; Patricia Domínguez; María Teresa Frías
To obtain information about the porcine circovirus type 2 (PCV2) infection status of pigs in Cuba and the probable association of PCV2 with other porcine viruses, tissue samples collected from ill pigs were evaluated using polymerase chain reaction (PCR). The PCR analysis showed that 67.7% of the samples (23/34) from seven swine herds of six different geographic regions were detected to be positive for PCV2. Ten of the 23 PCV2 positive samples (43.5%) shown a concurrent infection with porcine parvovirus (PPV) and 17 of 23 PCV2 positive samples (73.9%) exhibited a concomitant infection with classical swine fever virus (CSFV). This study is the first report of PCV2 infecting pigs with different clinical conditions in Cuban swine herds and provides evidence of PCV2 co-infection with PPV and CSFV in the field.
Brazilian Journal of Microbiology | 2009
Lester J. Pérez; Heidy Díaz de Arce
Aujeszky’s disease, also known as pseudorabies causes severe economic losses in swine industry and affects the pig husbandry all over the world. The conventional diagnostic procedure is time-consuming and false-negative results may occur in submissions from latently infected animals. The development, optimization and evaluation of a polymerase chain reaction (PCR) assay are presented for the diagnosis of pseudorabies infection. This assay was based on the amplification of a highly conserved viral gD gene fragment. PCR products of the expected size were obtained from PRV strains. Non-specific reactions were not observed when a related herpesvirus, other porcine DNA genome viruses and uninfected cells were used to assess PCR. The analytical sensitivity of the test was estimated to be 1.34 TCID50/ 50 uL. The analysis of tissue homogenate samples from naturally infected animals proved the potential usefulness of the method for a rapid disease diagnosis from field cases. A rapid, sensitive and specific PCR-based diagnostic assay to detect pseudorabies virus in clinical samples is provided.
Research in Veterinary Science | 2012
Ana María Acevedo; Heidy Díaz de Arce; Paulo Eduardo Brandão; M. Colás; Sheila Oliveira; Lester J. Pérez
Abstract The emergence of new infectious bronchitis virus (IBV) genotypes or serotypes along with the poor cross-protection observed among IBV serotypes have complicated the avian infectious bronchitis (IB) control programs in different geographic regions. In Cuba, the lack of genetic information regarding IBV and the increasing epidemiological importance of this virus in Cuban chicken flocks demand further characterization of IBV isolates. In the present work, studies of genetic diversity and phylogenetic relationships among recent IBV isolates from Cuban chicken flocks showing respiratory disorders were performed. Two putative genotypes genetically different to the Massachusetts genotype H120 strain used in the Cuban vaccination program were found in the flocks assessed. In addition, a potential nephropathogenic IBV isolate was found by first time in Cuba.
PLOS ONE | 2015
Abdulahi Alfonso-Morales; Liliam Rios; Orlando Martínez-Pérez; Roser Dolz; Rosa Valle; Carmen L. Perera; Kateri Bertran; María Teresa Frías; Llilianne Ganges; Heidy Díaz de Arce; Natàlia Majó; José I. Núñez; Lester J. Pérez
Background Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Methodology/Principal Findings Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. Conclusions/Significance This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular epidemiology studies.
Infection, Genetics and Evolution | 2012
Nadia Martínez; Paulo Eduardo Brandão; Sibele Pinheiro de Souza; Maritza Barrera; Nelson Santana; Heidy Díaz de Arce; Lester J. Pérez
Abstract Bovine coronavirus has been associated with diarrhoea in newborn calves, winter dysentery in adult cattle and respiratory tract infections in calves and feedlot cattle. In Cuba, the presence of BCoV was first reported in 2006. Since then, sporadic outbreaks have continued to occur. This study was aimed at deepening the knowledge of the evolution, molecular markers of virulence and epidemiology of BCoV in Cuba. A total of 30 samples collected between 2009 and 2011 were used for PCR amplification and direct sequencing of partial or full S gene. Sequence comparison and phylogenetic studies were conducted using partial or complete S gene sequences as phylogenetic markers. All Cuban bovine coronavirus sequences were located in a single cluster supported by 100% bootstrap and 1.00 posterior probability values. The Cuban bovine coronavirus sequences were also clustered with the USA BCoV strains corresponding to the GenBank accession numbers EF424621 and EF424623, suggesting a common origin for these viruses. This phylogenetic cluster was also the only group of sequences in which no recombination events were detected. Of the 45 amino acid changes found in the Cuban strains, four were unique.