Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen Vela is active.

Publication


Featured researches published by Carmen Vela.


Vaccine | 2000

Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles

Paloma Rueda; Jesús Fominaya; Jan Langeveld; C. J. M. Bruschke; Carmen Vela; J. Ignacio Casal

We have demonstrated earlier the usefulness of recombinant porcine parvovirus (PPV) virus-like particles (VLPs) as an efficient recombinant vaccine for PPV. Here, we have demonstrated that preparations of PPV VLPs could be contaminated by recombinant baculoviruses. Since these baculoviruses can be a problem for the registration and safety requirements of the recombinant vaccine, we have tested different baculovirus inactivation strategies, studying simultaneously the integrity and immunogenicity of the VLPs. These methods were pasteurization, treatment with detergents and alkylation with binary ethylenimine (BEI). The structural and functional integrity of the PPV VLPs after the inactivation treatments were analyzed by electron microscopy, hemagglutination, double antibody sandwich (DAS)-ELISA and immunogenicity studies. Binary ethylenimine and Triton X-100 inactivated particles maintained all the original structural and antigenic properties. In addition, PPV VLPs were subjected to size-exclusion chromatography to analyze the presence of VP2 monomers or any other contaminant. The resulting highly purified material was used as the standard of reference to quantify PPV VLPs in order to determine the dose of vaccine by DAS-ELISA. After immunization experiments in guinea pigs, the antibody titers obtained with all the inactivation procedures were very similar. Triton X-100 treatment was selected for further testing in animals because of the speed, simplicity and safety of the overall procedure.


Vaccine | 2001

Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus.

Jan Langeveld; Frank R. Brennan; Jorge Luis Martínez-Torrecuadrada; Tim Jones; Ronald S. Boshuizen; Carmen Vela; J. Ignacio Casal; Søren Kamstrup; Kristian Dalsgaard; Rob H. Meloen; Mary M Bendig; W. O. Hamilton

A vaccine based upon a recombinant plant virus (CPMV-PARVO1), displaying a peptide derived from the VP2 capsid protein of canine parvovirus (CPV), has previously been described. To date, studies with the vaccine have utilized viable plant chimaeric particles (CVPs). In this study, CPMV-PARVO1 was inactivated by UV treatment to remove the possibility of replication of the recombinant plant virus in a plant host after manufacture of the vaccine. We show that the inactivated CVP is able to protect dogs from a lethal challenge with CPV following parenteral immunization with the vaccine. Dogs immunized with the inactivated CPMV-PARVO1 in adjuvant displayed no clinical signs of disease and shedding of CPV in faeces was limited following CPV challenge. All immunized dogs elicited high titres of peptide-specific antibody, which neutralized CPV in vitro. Levels of protection, virus shedding and VP2-specific antibody were comparable to those seen in dogs immunized with the same VP2- peptide coupled to keyhole limpet hemocyanin (KLH). Since plant virus-derived vaccines have the potential for cost-effective manufacture and are not known to replicate in mammalian cells, they represent a viable alternative to current replicating vaccine vectors for development of both human and veterinary vaccines.


Vaccine | 1992

Production of porcine parvovirus empty capsids with high immunogenic activity.

Concepción Martínez; Kristian Dalsgaard; JoséAngel López de Turiso; Elena Cortés; Carmen Vela; JoséIgnacio Casal

The VP2 gene of porcine parvovirus was cloned in the baculovirus system and expressed in insect cells. The resulting product was present in high yield. It self-assembled into particles which were structurally and antigenically indistinguishable from regular PPV capsids. A high degree of purity of the recombinant capsids was obtained by ammonium sulphate precipitation of cell lysates. These virus-like particles were used as antigen in the immunization of two pigs. The pigs elicited an immune response which, when assayed by standard serological techniques, was identical to that of a commercial vaccine. The amount of recombinant antigen needed in a vaccine dose was only 3 micrograms in a primary dose and 1.5 micrograms in the booster.


Vaccine | 1995

Full protection in mink against mink enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein

Jan Langeveld; Søren Kamstrup; Åse Uttenthal; Bertel Strandbygaard; Carmen Vela; Kristian Dalsgaard; N. J. C. M. Beekman; Rob H. Meloen; José Ignacio Casal

Two recently developed vaccine--one based on synthetic peptide and one based on recombinant capsid protein--fully protected dogs against heavy experimental canine parvovirus (CPV) infection. The high sequence homology ( > 98%) and antigenic similarity between CPV and mink enteritis virus (MEV), feline panleukopenia virus, and raccoon parvovirus, suggest that both vaccines could protect mink, cats and raccoons against these respective host range variants. This was tested in mink and turned out to be the case. The two vaccines were fully protective and as effective as a conventional commercial vaccine based on inactivated virus. Surprisingly, this protection was obtained after only a single injection. Furthermore, the vaccinal dose of 150 micrograms of conjugated peptide or 3 micrograms of recombinant VP2 particles per animal, are sufficiently low to be cost-effective and applicable on a large scale.


Virus Research | 1998

Mapping the antigenic structure of porcine parvovirus at the level of peptides

Søren Kamstrup; Jan Langeveld; Anette Bøtner; Jens Nielsen; Wim M. M. Schaaper; Ronald S. Boshuizen; José Ignacio Casal; Peter Højrup; Carmen Vela; Rob H. Meloen; Kristian Dalsgaard

The antigenic structure of the capsid proteins of porcine parvovirus (PPV) was investigated. A total of nine linear epitopes were identified by Pepscan using porcine or rabbit anti-PPV antisera. No sites were identified with a panel of neutralising monoclonal antibodies (MAbs). All epitopes were located in the region corresponding to the major capsid protein VP2. Based on this information, and on analogy to other autonomous parvoviruses, 24 different peptides were synthesised, coupled to keyhole limpet haemocyanin (KLH) and used to immunise rabbits. Most antisera were able to bind viral protein. Only peptides from the N-terminal part of VP2 were able to induce virus-neutralising antibodies, although at low levels. A similar neutralising activity could be obtained in pigs. The exposure of the N-terminus was shown in full virions, both by immunoelectron microscopy and absorption experiments. It is concluded that in PPV, the VP2 N-terminus is involved in virus neutralisation (VN) and peptides from this region are therefore primary targets for developing peptide-based vaccines against this virus.


Virology Journal | 2012

Seroprevalence of human respiratory syncytial virus and human metapneumovirus in healthy population analyzed by recombinant fusion protein-based enzyme linked immunosorbent assay

Patricia Sastre; Tamara Ruiz; Oliver Schildgen; Verena Schildgen; Carmen Vela; Paloma Rueda

BackgroundHuman respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are two of the most frequent respiratory pathogens that circulate worldwide. Infection with either virus can lead to hospitalization of young children, immunocompromised people and the elderly.A better understanding of the epidemiological aspects, such as prevalence of these viruses in the population will be of significant importance to the scientific community. The aim of this study was to gain some detailed knowledge on the humoral immune response to both viruses in different populations of individuals.FindingsThe fusion protein (F) of hRSV and hMPV was expressed in the baculovirus and Escherichia coli systems, respectively, and used as antigen in two independent enzyme-linked immunosorbent assays (ELISAs) for detection of specific antibodies in human sera. The seroprevalence of each virus in a large cohort of individuals with ages ranging from 0 to 89 years old was determined. Although the general distribution of the antibody response to each virus in the different age group was similar, the prevalence of hRSV appeared to be higher than that of hMPV in most of them. The group of children with ages between 0 and 2 showed the highest seronegative rates. After this age, an increase in the antibody response was observed, most likely as the result of new infections or even due to reinfections.ConclusionsThe use of these specific F-ELISAs in seroepidemiological studies might be helpful for a better understanding of the human antibody response to these viruses.


Clinical and Vaccine Immunology | 2011

Differentiation between human coronaviruses NL63 and 229E using a novel double-antibody sandwich enzyme-linked immunosorbent assay based on specific monoclonal antibodies.

Patricia Sastre; Ronald Dijkman; Ana Camuñas; Tamara Ruiz; Maarten F. Jebbink; Lia van der Hoek; Carmen Vela; Paloma Rueda

ABSTRACT Human coronaviruses (HCoVs) are responsible for respiratory tract infections ranging from common colds to severe acute respiratory syndrome. HCoV-NL63 and HCoV-229E are two of the four HCoVs that circulate worldwide and are close phylogenetic relatives. HCoV infections can lead to hospitalization of children, elderly individuals, and immunocompromised patients. Globally, approximately 5% of all upper and lower respiratory tract infections in hospitalized children are caused by HCoV-229E and HCoV-NL63. The latter virus has recently been associated with the childhood disease croup. Thus, differentiation between the two viruses is relevant for epidemiology studies. The aim of this study was to develop a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) as a potential tool for identification and differentiation between HCoV-NL63 and HCoV-229E. The nucleocapsid (N) proteins of HCoV-NL63 and HCoV-229E were expressed in an Escherichia coli system and used to immunize mice in order to obtain monoclonal antibodies (MAbs) specific for each virus. Three specific MAbs to HCoV-NL63, one MAb specific to HCoV-229E, and four MAbs that recognized both viruses were obtained. After their characterization, three MAbs were selected in order to develop a differential DAS-ELISA. The described assay could detect up to 3 ng/ml of N protein and 50 50% tissue culture infective doses/ml of virus stock. No cross-reactivity with other human coronaviruses or closely related animal coronaviruses was found. The newly developed DAS-ELISA was species specific, and therefore, it could be considered a potential tool for detection and differentiation of HCoV-NL63 and HCoV-229E infections.


BMC Clinical Pathology | 2012

Detection of collagen triple helix repeat containing-1 and nuclear factor (erythroid-derived 2)-like 3 in colorectal cancer

Marco Palma; Lissett López; Margarita García; Nuria de la Roja; Tamara Ruiz; Julita García; Elisabet Rosell; Carmen Vela; Paloma Rueda; MaríaJosé Rodríguez

BackgroundCollagen Triple Helix Repeat Containing-1 (CTHRC1) and Nuclear factor (erythroid-derived 2)-like 3 (NFE2L3) may be useful biomarker candidates for the diagnosis of colorectal cancer (CRC) since they have shown an increase messenger RNA transcripts (mRNA) expression level in adenomas and colorectal tumours when compared to normal tissues.MethodsTo evaluate CTHRC1 and NFE2L3 as cancer biomarkers, it was generated and characterised several novel specific polyclonal antibodies (PAb), monoclonal antibodies (MAbs) and soluble Fab fragments (sFabs) against recombinant CTHRC1 and NFE2L3 proteins, which were obtained from different sources, including a human antibody library and immunised animals. The antibodies and Fab fragments were tested for recognition of native CTHRC1 and NFE2L3 proteins by immunoblotting analysis and enzyme-linked immunosorbent assay (ELISA) in colorectal cell lines derived from tumour and cancer tissues.ResultsBoth, antibodies and a Fab fragment showed high specificity since they recognised only their corresponding recombinant antigens, but not a panel of different unrelated- and related proteins.In Western blot analysis of CTHRC1, a monoclonal antibody designated CH21D7 was able to detect a band of the apparent molecular weight of a full-length CTHRC1 in the human colon adenocarcinoma cell line HT29. This result was confirmed by a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with the monoclonal antibodies CH21D7 and CH24G2, detecting CTHRC1 in HT29 and in the colon adenocarcinoma cell line SW620.Similar experiments were performed with PAb, MAbs, and sFab against NFE2L3. The immunoblot analysis showed that the monoclonal antibody 41HF8 recognised NFE2L3 in HT29, and leukocytes. These results were verified by DAS-ELISA assay using the pairs PAb/sFab E5 and MAb 41HF8/sFab E5.Furthermore, an immunoassay for simultaneous detection of the two cancer biomarkers was developed using a Dissociation-Enhanced Lanthanide Fluorescent Immunoassay technology (DELFIA).ConclusionsIn conclusion, the antibodies obtained in this study are specific for CTHRC1 and NFE2L3 since they do not cross-react with unrelated- and related proteins and are useful for specific measurement of native CTHRC1 and NFE2L3 proteins. The antibodies and immunoassays may be useful for the analysis of CTHRC1 and NFE2L3 in clinical samples and for screening of therapeutic compounds in CRC.


Journal of Veterinary Diagnostic Investigation | 2007

Development of a sensitive and specific indirect enzyme-linked immunosorbent assay based on a baculovirus recombinant antigen for detection of specific antibodies against Ehrlichia canis.

Lissett López; Ángel Venteo; Enara Aguirre; M. García; MaJosé Rodríguez; Inmaculada Amusategui; Miguel A. Tesouro; Carmen Vela; A. Sainz; Paloma Rueda

An indirect enzyme-linked immunosorbent assay (ELISA) based on baculovirus recombinant P30 protein of Ehrlichia canis and the 1BH4 anticanine IgG monoclonal antibody was developed and evaluated by examining a panel of 98 positive and 157 negative sera using the indirect fluorescent antibody (IFA) test as the reference technique. The P30-based ELISA appeared to be sensitive and specific (77.55% and 95.54%, respectively) when qualitative results (positive/negative) were compared with those of the IFA test; the coefficient of correlation (R) between the 2 tests was 0.833. Furthermore, it was possible to establish a mathematical formula for use in comparing the results of both techniques. These results indicate that recombinant P30 antigen-based ELISA is a suitable alternative of the IFA test for simple, consistent, and rapid serodiagnosis of canine ehrlichiosis. Moreover, the use of this recombinant protein as antigen offers a great advantage for antigen preparation in comparison with other techniques in which the whole E. canis organism is used as antigen.


Avian Pathology | 2009

Recombinant subunit vaccine elicits protection against goose haemorrhagic nephritis and enteritis

Tamás Mató; Zoltan Penzes; Paloma Rueda; Carmen Vela; Veronika Kardi; Anna Zolnai; Ferenc Misák; Vilmos Palya

Outbreaks of haemorrhagic nephritis and enteritis of geese (HNEG) have been reported in goose flocks in Hungary, Germany and France since 1969. HNEG is characterized by high morbidity and mortality rates in geese 3 to 10 weeks of age. The causative agent of HNEG is the goose haemorrhagic polyomavirus (GHPV), which has a circular double-stranded DNA genome encoding the structural proteins VP1, VP2 and VP3. In vitro culture of GHPV has been problematic, so the baculovirus system was used to construct a recombinant virus expressing the VP1 gene of GHPV under control of the polyhedrin promoter in Sf9 insect cells. The expression and the identity of recombinant goose polyomavirus VP1 in the crude Sf9 cell extracts were confirmed by mass spectrometry. Experimental oil–emulsion vaccines containing two different doses of antigen were prepared using this crude extract. Goslings were vaccinated either once at 1 day old or twice by boosting 18 days after the primary vaccination, and were challenged with a virulent polyomavirus isolate at 5 weeks of age. A single injection of either vaccine dose induced 95% protection against challenge. Using the booster vaccination regimen, 100% protection was achieved with either vaccine dose.

Collaboration


Dive into the Carmen Vela's collaboration.

Top Co-Authors

Avatar

Jan Langeveld

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob H. Meloen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J. Ignacio Casal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Søren Kamstrup

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Oliver Schildgen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

José Ignacio Casal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Luis Maranga

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Paloma Rueda

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

A.F.G. Antonis

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge