Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carole Perruzzi is active.

Publication


Featured researches published by Carole Perruzzi.


Nature Medicine | 1999

REGULATION OF VASCULAR ENDOTHELIAL GROWTH FACTOR-DEPENDENT RETINAL NEOVASCULARIZATION BY INSULIN-LIKE GROWTH FACTOR-1 RECEPTOR

Lois E. H. Smith; Wei Shen; Carole Perruzzi; Shay Soker; Fumi Kinose; Xianghong Xu; Gregory S. Robinson; Sam Driver; Joyce Bischoff; Bei Zhang; James M. Schaeffer; Donald R. Senger

Although insulin-like growth factor 1 (IGF-1) has been associated with retinopathy, proof of a direct relationship has been lacking. Here we show that an IGF-1 receptor antagonist suppresses retinal neovascularization in vivo, and infer that interactions between IGF-1 and the IGF-1 receptor are necessary for induction of maximal neovascularization by vascular endothelial growth factor (VEGF). IGF-1 receptor regulation of VEGF action is mediated at least in part through control of VEGF activation of p44/42 mitogen-activated protein kinase, establishing a hierarchical relationship between IGF-1 and VEGF receptors. These findings establish an essential role for IGF-1 in angiogenesis and demonstrate a new target for control of retinopathy. They also explain why diabetic retinopathy initially increases with the onset of insulin treatment. IGF-1 levels, low in untreated diabetes, rise with insulin therapy, permitting VEGF-induced retinopathy.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: Direct correlation with clinical retinopathy of prematurity

Ann Hellström; Carole Perruzzi; Meihua Ju; Eva Engström; Anna-Lena Hård; Jun-Li Liu; Kerstin Albertsson-Wikland; Björn Carlsson; Aimon Niklasson; Lena Sjödell; Derek LeRoith; Donald R. Senger; Lois E. H. Smith

Retinopathy of prematurity is a blinding disease, initiated by lack of retinal vascular growth after premature birth. We show that lack of insulin-like growth factor I (IGF-I) in knockout mice prevents normal retinal vascular growth, despite the presence of vascular endothelial growth factor, important to vessel development. In vitro, low levels of IGF-I prevent vascular endothelial growth factor-induced activation of protein kinase B (Akt), a kinase critical for endothelial cell survival. Our results from studies in premature infants suggest that if the IGF-I level is sufficient after birth, normal vessel development occurs and retinopathy of prematurity does not develop. When IGF-I is persistently low, vessels cease to grow, maturing avascular retina becomes hypoxic and vascular endothelial growth factor accumulates in the vitreous. As IGF-I increases to a critical level, retinal neovascularization is triggered. These data indicate that serum IGF-I levels in premature infants can predict which infants will develop retinopathy of prematurity and further suggests that early restoration of IGF-I in premature infants to normal levels could prevent this disease.


American Journal of Pathology | 2002

The α1β1 and α2β1 Integrins Provide Critical Support for Vascular Endothelial Growth Factor Signaling, Endothelial Cell Migration, and Tumor Angiogenesis

Donald R. Senger; Carole Perruzzi; Michael Streit; Victor E. Koteliansky; Antonin de Fougerolles; Michael Detmar

Angiogenesis is a complex process, involving functional cooperativity between cytokines and endothelial cell (EC) surface integrins. In this study, we investigated the mechanisms through which the α1β1 and α2β1 integrins support angiogenesis driven by vascular endothelial growth factor (VEGF). Dermal microvascular EC attachment through either α1β1 or α2β1 supported robust VEGF activation of the Erk1/Erk2 (p44/42) mitogen-activated protein kinase signal transduction pathway that drives EC proliferation. Haptotactic EC migration toward collagen I was dependent on α1β1 and α2β1 as was VEGF-stimulated chemotaxis of ECs in a uniform collagen matrix. Consistent with the functions of α1β1 and α2β1 in supporting signal transduction and EC migration, antibody antagonism of either integrin resulted in potent inhibition of VEGF-driven angiogenesis in mouse skin. Moreover, combined antagonism of α1β1 and α2β1 substantially reduced tumor growth and angiogenesis of human squamous cell carcinoma xenografts. Collectively, these studies identify critical collaborative functions for the α1β1 and α2β1 integrins in supporting VEGF signal transduction, EC migration, and tumor angiogenesis.


Biochimica et Biophysica Acta | 1989

Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin

Donald R. Senger; Carole Perruzzi; Ageliki Papadopoulos; Daniel G. Tenen

A wide variety of rodent and human tumor cells secrete antigenically related phosphoproteins with molecular weights (Mr) of approximately 58,000 (hamster), 62,000 (rat, mouse), 67,000 (human) (Senger, D.R. and Perruzzi, C.A. (1985) Cancer Res. 45, 5818-5823). Expression of these phosphoproteins is transformation-related; tumor cells produce at least 10-fold or more of this protein as compared to their normal or untransformed counterparts. N-terminal and internal sequences derived from the rat tumor-secreted phosphoprotein indicate that it is identical to rat osteopontin, a bone protein with an Arg-Gly-Asp cell-binding sequence (Oldberg, A., Franzen, A. and Heinegard, D. (1986) Proc. Natl. Acad. Sci. USA 83, 8819-8823). Antibody raised to the Mr 62,000 rat tumor-secreted phosphoprotein was found to bind Mr 75,000 and Mr 35,000 components of human milk, indicating that milk contains antigenically related proteins. The Mr 75,000 protein, which is present in human milk at concentrations ranging from 3 to 10 micrograms/ml, has been purified to homogeneity. The Mr 35,000 component is apparently derived from the Mr 75,000 protein by proteolytic cleavage, and this cleavage also occurs in vitro in the presence of thrombin. N-terminal and internal amino acid sequences were derived from the Mr 75,000 milk protein and found to be similar (12/21 residues) to N-terminal and internal sequences derived from the rat tumor-secreted phosphoprotein and osteopontin. Moreover, sequence derived from the N-terminus of the human milk protein is identical to that of human bone sialoprotein I (the likely human homolog of rat osteopontin) (Fisher, L.W., Hawkins, G.R., Tuross, N. and Termine, J.D. (1987) J. Biol. Chem. 262, 9702-9708).


Biochimica et Biophysica Acta | 1996

CELL MIGRATION PROMOTED BY A POTENT GRGDS-CONTAINING THROMBIN-CLEAVAGE FRAGMENT OF OSTEOPONTIN

Donald R. Senger; Carole Perruzzi

Osteopontin (OPN) is a secreted adhesive glycoprotein with a gly-arg-gly-asp-ser (GRGDS) cell binding domain. Several independent studies have suggested that OPN functions in tumor growth and metastasis, and one likely possibility is that OPN facilitates tumor invasion by promoting tumor cell migration. Consistent with this hypothesis, immobilized OPN promoted concentration-dependent tumor cell migration (i.e., haptotaxis) in modified Boyden chambers. In particular, cleavage of OPN by thrombin, which likely occurs in the tumor microenvironment, resulted in enhancement of OPNs haptotactic activity; and assays performed with purified preparations of the two individual OPN thrombin-cleavage fragments demonstrated that all detectable activity was associated with the GRGDS-containing fragment. In contrast to the activity of both OPN and its GRGDS-containing fragment in promoting haptotaxis, neither of these proteins in solution promoted chemotaxis, indicating that each must be immobilized to promote cell migration. In haptotaxis assays, antibody LM609 to integrin alpha v beta 3 blocked > 80% cell migration towards the GRGDS-containing OPN fragment, implicating alpha v beta 3 as its principal functional receptor. In comparison with equimolar quantities of other adhesive proteins, the GRGDS-containing OPN thrombin-cleavage fragment was not only > 2-fold more effective than intact OPN at promoting haptotaxis, but also > 8-fold and > 6-fold more effective than fibrinogen and vitronectin, respectively, indicating that this OPN fragment is highly active relative to other alpha v beta 3 ligands.


American Journal of Pathology | 2002

Molecular Profiling of Angiogenesis Markers

Shu-Ching Shih; Gregory S. Robinson; Carole Perruzzi; Alfonso Calvo; Kartiki Desai; Jeffery E. Green; Iqbal Unnisa Ali; Lois E. H. Smith; Donald R. Senger

The goal of this study was to develop a sensitive, simple, and widely applicable assay to measure copy numbers of specific mRNAs using real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), and identify a profile of gene expression closely associated with angiogenesis. We measured a panel of nine potential angiogenesis markers from a mouse transgenic model of prostate adenocarcinoma (TRAMP) and a mouse skin model of vascular endothelial growth factor (VEGF)-driven angiogenesis. In both models, expression of VEGF correlated with expression of mRNAs encoding other angiogenic cytokines (angiopoietin-1 and angiopoietin-2), endothelial cell receptor tyrosine kinases (Flt-1, KDR, Tie-1), and endothelial cell adhesion molecules (VE-cadherin, PECAM-1). Relative to control, in dermis highly stimulated by VEGF, the Ang-2 mRNA transcript numbers increased 35-fold, PECAM-1 and VE-cadherin increased 10-fold, Tie-1 increased 8-fold, KDR and Flt-1 each increased 4-fold, and Ang-1 increased 2-fold. All transcript numbers were correspondingly reduced in skin with less VEGF expression, indicating a relationship of each of these seven markers with VEGF. Thus, this study identifies a highly efficient method for precise quantification of a panel of seven specific mRNAs that correlate with VEGF expression and VEGF-induced neovascularization, and it provides evidence that real-time quantitative RT-PCR offers a highly sensitive strategy for monitoring angiogenesis.


Cancer Research | 2008

Palomid 529, a Novel Small-Molecule Drug, Is a TORC1/TORC2 Inhibitor That Reduces Tumor Growth, Tumor Angiogenesis, and Vascular Permeability

Qi Xue; Benjamin Hopkins; Carole Perruzzi; Durga Udayakumar; David Sherris; Laura E. Benjamin

It has become clear that the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is central for promoting both tumor and tumor stroma and is therefore a major target for anticancer drug development. First- and second-generation rapalogs (prototypical mTOR inhibitors) have shown promise but, due to the complex nature of mTOR signaling, can result in counterproductive feedback signaling to potentiate upstream Akt signaling. We present a novel PI3K/Akt/mTOR inhibitor, Palomid 529 (P529), which inhibits the TORC1 and TORC2 complexes and shows both inhibition of Akt signaling and mTOR signaling similarly in tumor and vasculature. We show that P529 inhibits tumor growth, angiogenesis, and vascular permeability. It retains the beneficial aspects of tumor vascular normalization that rapamycin boasts. However, P529 has the additional benefit of blocking pAktS473 signaling consistent with blocking TORC2 in all cells and thus bypassing feedback loops that lead to increased Akt signaling in some tumor cells.


The FASEB Journal | 2009

Thrombospondin-1 modulates vascular endothelial growth factor activity at the receptor level

Xuefeng Zhang; Shideh Kazerounian; Mark Duquette; Carole Perruzzi; Janice A. Nagy; Harold F. Dvorak; Sareh Parangi; Jack Lawler

Vascular endothelial growth factor (VEGF) is a well‐established stimulator of vascular permeability and angiogenesis, whereas thrombospondin‐1 (TSP‐1) is a potent angiogenic inhibitor. In this study, we have found that the TSP‐1 receptors CD36 and ßl integrin associate with the VEGF receptor 2 (VEGFR2). The coclustering of receptors that regulate angiogenesis may provide the endothelial cell with a platform for integration of positive and negative signals in the plane of the membrane. Thus, this complex may represent a molecular switch that regulates angiogenesis and determines endothelial cell behavior. In this context, physiological levels of TSP‐1 appear to support VEGFR2 function on both the cellular and tissue level, because phosphorylation of VEGFR2 and vascular permeability in response to VEGF are decreased in TSP‐1‐null mice and isolated endothelial cells. A therapeutic agent based on the antiangiogenic domain of TSP‐1, designated 3TSR (for three TSP‐1 type 1 repeats), has significant antiangiogenic and antitumor efficacy. Systemic treatment of wild‐type mice with 3TSR significantly decreased VEGF‐induced permeability. Consistent with this result, VEGF‐stimulated phosphorylation of VEGFR2 was also significantly decreased in lung extracts from 3TSR‐treated mice. Moreover, 3TSR significantly decreased VEGF‐stimulated VEGFR2 phosphorylation in human dermal microvascular endothelial cells in culture. Taken together, the results indicate that TSP‐1 and 3TSR modulate the function of VEGFR2.—Zhang, X., Kazerounian, S., Duquette, M., Perruzzi, C., Nagy, J. A., Dvorak, H. J., Parangi, S., and Lawler, J. Thrombospondin‐1 modulates vascular endothelial growth factor activity at the receptor level. FASEB J. 23, 3368–3376 (2009). www.fasebj.org


Blood | 2011

Priming of the vascular endothelial growth factor signaling pathway by thrombospondin-1, CD36, and spleen tyrosine kinase.

Shideh Kazerounian; Mark Duquette; Millys Reyes; James T. Lawler; Keli Song; Carole Perruzzi; Luca Primo; Roya Khosravi-Far; Federico Bussolino; Isaac Rabinovitz; Jack Lawler

CD36 plays a critical role in the inhibition of angiogenesis through binding to the type 1 repeats of thrombospondin-1 (TSP-1) and activating Fyn tyrosine kinase and MAPK pathways. Here, we reveal a novel association of CD36 with VEGFR-2 and spleen tyrosine kinase (Syk). We also address the correlation between the expression of CD36 and Syk by demonstrating that overexpression of CD36 in HUVECs up-regulates endogenous Syk expression. We also define a new role for TSP-1 and CD36 in the activation of the VEGFR-2 signaling pathway that requires Syk. Our findings also identify a role for Syk as a stimulator of VEGF-A-induced angiogenesis by increasing phosphorylation of Y1175 in VEGFR-2, which is a major tyrosine for promoting VEGF-A-induced endothelial cell migration. Together, these studies introduce a new signaling pathway for TSP-1, CD36, and Syk, and address the role of these proteins in regulating the angiogenic switch.


Cancer Biology & Therapy | 2004

Inhibition of Tie-2 Signaling Induces Endothelial Cell Apoptosis, Decreases Akt Signaling and Induces Endothelial Cell Expression of the Endogenous Anti-Angiogenic Molecule, Thrombospondin-1

Qi Niu; Carole Perruzzi; Daniel Voskas; Jack Lawler; Daniel J. Dumont; Laura E. Benjamin

Small molecule inhibitors of endothelial cell specific tyrosine kinases are currently under investigation as potential means to block tumor angiogenesis. We have investigated the utility of blocking Tie-2 signaling in endothelial cells as a potential anti-angiogenic strategy. We have found that interruption of Tie-2 signaling either via RNAi or overexpression of a kinase-dead Tie-2 led to loss of endothelial cell viability, even in the presence of serum. Mechanistically, this is linked to a block in Akt signaling and increased thrombospondin expression. Thrombospondins are endogenous anti-angiogenic matricellular proteins known to regulate tumor growth and angiogenesis. We observed that both Tie-2 and subsequent PI3Kinase signaling regulates thrombospondin-1 expression. These data have lead to the model that Angiopoietin signaling through Tie-2 activates PI3Kinase/Akt, which represses thrombospondin expression. Thus, targeting Tie-2 with small molecules maybe efficacious as an anti-angiogenic therapy.

Collaboration


Dive into the Carole Perruzzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura E. Benjamin

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Harold F. Dvorak

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Damien Gerald

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thuy L. Phung

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jack Lawler

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lawrence F. Brown

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Qi Xue

Eli Lilly and Company

View shared research outputs
Top Co-Authors

Avatar

A Papadopoulos-Sergiou

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin Hopkins

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge