Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clara Ventura is active.

Publication


Featured researches published by Clara Ventura.


Toxicology Letters | 2012

Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or -independent breast cancer cells exposed to low or high concentrations of the pesticide.

Clara Ventura; Mariel Núñez; Noelia Miret; Diego J. Martinel Lamas; Andrea Randi; Andrés Venturino; Elena Rivera; Claudia Cocca

It has reported that many environmental compounds may display estrogenic actions and these findings led to researchers to associate breast cancer risk with the use of some pesticides. The aim of this work was to investigate the effect of chlorpyrifos (CPF) on cell proliferation and the ERα-dependence of this action employing MCF-7 and MDA-MB-231 breast cancer cell lines. We have also analyzed CPF action on the cell cycle distribution and the cyclins that are implicated in G1-S and intra-S checkpoints. Finally, the action on cell death and ROS production were studied. We demonstrated the ability of CPF 0.05μM to induce cell proliferation through ERα in hormone-dependent breast cancer cells. In contrast, CPF 50μM induces intra-S arrest modifying checkpoints proteins, through a mechanism that may involve changes in redox balance in MCF-7. In MDA-MB-231, we have found that CPF 50μM produces an arrest in G2/M phase which could be related to the capacity of the pesticide for binding to tubulin sites altering microtubules polymerization. Altogether, our results provide new evidences on the action of the pesticide CPF as an environmental breast cancer risk factor due to the effects that causes on the mechanisms that modulate breast cell proliferation.


The Journal of Steroid Biochemistry and Molecular Biology | 2016

Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance

Clara Ventura; María Rosa Ramos Nieto; Nadia Bourguignon; Victoria Lux-Lantos; Horacio A. Rodríguez; Gabriel Cao; Andrea Randi; Claudia Cocca; Mariel Núñez

Endocrine disruptors (EDs) are compounds that interfere with hormone regulation and influence mammary carcinogenesis. We have previously demonstrated that the pesticide chlorpyrifos (CPF) acts as an ED in vitro, since it induces human breast cancer cells proliferation through estrogen receptor alpha (ERα) pathway. In this work, we studied the effects of CPF at environmental doses (0.01 and 1mg/kg/day) on mammary gland, steroid hormone receptors expression and serum steroid hormone levels. It was carried out using female Sprague-Dawley 40-days-old rats exposed to the pesticide during 100 days. We observed a proliferating ductal network with a higher number of ducts and alveolar structures. We also found an increased number of benign breast diseases, such as hyperplasia and adenosis. CPF enhanced progesterone receptor (PgR) along with the proliferating cell nuclear antigen (PCNA) in epithelial ductal cells. On the other hand, the pesticide reduced the expression of co-repressors of estrogen receptor activity REA and SMRT and it decreased serum estradiol (E2), progesterone (Pg) and luteinizing hormone (LH) levels. Finally, we found a persistent decrease in LH levels among ovariectomized rats exposed to CPF. Therefore, CPF alters the endocrine balance acting as an ED in vivo. These findings warn about the harmful effects that CPF exerts on mammary gland, suggesting that this compound may act as a risk factor for breast cancer.


Chemosphere | 2015

Chlorpyrifos inhibits cell proliferation through ERK1/2 phosphorylation in breast cancer cell lines

Clara Ventura; Andrés Venturino; Noelia Miret; Andrea Randi; Elena Rivera; Mariel Núñez; Claudia Cocca

It is well known the participation of oxidative stress in the induction and development of different pathologies including cancer, diabetes, neurodegeneration and respiratory disorders among others. It has been reported that oxidative stress may be induced by pesticides and it could be the cause of health alteration mediated by pollutants exposure. Large number of registered products containing chlorpyrifos (CPF) is used to control pest worldwide. We have previously reported that 50 μM CPF induces ROS generation and produces cell cycle arrest followed by cell death. The present investigation was designed to identify the pathway involved in CPF-inhibited cell proliferation in MCF-7 and MDA-MB-231 breast cancer cell lines. In addition, we determined if CPF-induced oxidative stress is related to alterations in antioxidant defense system. Finally we studied the molecular mechanisms underlying in the cell proliferation inhibition produced by the pesticide. In this study we demonstrate that CPF (50 μM) induces redox imbalance altering the antioxidant defense system in breast cancer cells. Furthermore, we found that the main mechanism involved in the inhibition of cell proliferation induced by CPF is an increment of p-ERK1/2 levels mediated by H2O2 in breast cancer cells. As PD98059 could not abolish the increment of ROS induced by CPF, we concluded that ERK1/2 phosphorylation is subsequent to ROS production induced by CPF but not the inverse.


Journal of Dermatological Science | 2013

Antitumor activity of histamine and clozapine in a mouse experimental model of human melanoma

Noelia A. Massari; Vanina A. Medina; G. Cricco; Diego J. Martinel Lamas; Lorena Sambuco; Romina Pagotto; Clara Ventura; Pablo Juan Ciraolo; Omar Pedro Pignataro; Rosa Bergoc; Elena Rivera

BACKGROUND Functional presence of histamine H4 receptor (H4R) was demonstrated in human melanoma cell lines and biopsies. OBJECTIVE The purposes of this work were to investigate signal transduction pathways and biological responses triggered by the activation of H4R in human primary (WM35) and metastatic (M1/15) melanoma cell lines and to evaluate the in vivo antitumor activity of histamine (HA) and clozapine (CLZ) on human M1/15 melanoma xenografts. METHODS Clonogenic assay, incorporation of BrdU, cell cycle distribution, phosphorylation levels of ERK1/2 and cAMP production were evaluated in vitro. An experimental human melanoma model was developed into athymic nude mice. Tumor growth, survival and histochemical studies were performed in order to investigate the expression levels of H4R, HA, PCNA, mitotic index (MI), and angiogenesis. RESULTS The results indicate that H4R agonists inhibited forskolin-induced cAMP levels only in M1/15 cells while increased phosphorylation levels of ERK1/2 and decreased proliferation in both cell types. In vivo studies show that HA and CLZ (1mgkg(-1), sc) significantly increased median survival and decreased tumor volume. These effects were associated to a reduction in MI, in the expression of proliferation marker and in intratumoral neovascularization. CONCLUSIONS We conclude that HA and CLZ exhibit an antitumoral effect in vitro and in vivo on human melanoma, suggesting the therapeutic potential of these compounds for the treatment of malignant melanoma.


Cancer Biology & Therapy | 2015

Enhancement of ionizing radiation response by histamine in vitro and in vivo in human breast cancer.

Diego José Martinel Lamas; Jorge E Cortina; Clara Ventura; Helena Sterle; Eduardo Valli; Karina B. Balestrasse; Horacio Blanco; Graciela Cremaschi; Elena Rivera; Vanina Medina

The radioprotective potential of histamine on healthy tissue has been previously demonstrated. The aims of this work were to investigate the combinatorial effect of histamine or its receptor ligands and gamma radiation in vitro on the radiobiological response of 2 breast cancer cell lines (MDA-MB-231 and MCF-7), to explore the potential molecular mechanisms of the radiosensitizing action and to evaluate the histamine-induced radiosensitization in vivo in a triple negative breast cancer model. Results indicate that histamine significantly increased the radiosensitivity of MDA-MB-231 and MCF-7 cells. This effect was mimicked by the H1R agonist 2-(3-(trifluoromethyl)phenyl)histamine and the H4R agonists (Clobenpropit and VUF8430) in MDA-MB-231 and MCF-7 cells, respectively. Histamine and its agonists enhanced radiation-induced oxidative DNA damage, DNA double-strand breaks, apoptosis and senescence. These effects were associated with increased production of reactive oxygen species, which correlated with the inhibition of catalase, glutathione peroxidase and superoxide dismutase activities in MDA-MB-231 cells. Histamine was able also to potentiate in vivo the anti-tumoral effect of radiation, increasing the exponential tumor doubling time. We conclude that histamine increased radiation response of breast cancer cells, suggesting that it could be used as a potential adjuvant to enhance the efficacy of radiotherapy.


Toxicology Letters | 2017

Hexachlorobenzene alters cell cycle by regulating p27-cyclin E-CDK2 and c-Src-p27 protein complexes

Clara Ventura; Mariel Núñez; V. Gaido; Carolina Pontillo; Noelia Miret; Andrea Randi; Claudia Cocca

Hexachlorobenzene (HCB) is an organochlorine pollutant widely distributed in the environment around the entire world. Previous reports from our group and others have demonstrated that this compound is as an endocrine disruptor. We have also reported that HCB presents a co-carcinogenic effect in N-Nitroso-N-methyl-urea-induced mammary tumours in rats. In this work, we studied the effects of HCB on cell cycle progression and cell cycle regulating protein expression in the estrogen-sensitive breast cancer cell line, MCF-7. Here, we show that HCB alters cell cycle in a concentration-dependent way. The lowest assessed concentration (0.005μM) promotes the cell cycle progression, enhances cyclin D1 expression, and reduces the nuclear localization of p27 accompanied by an increased interaction between p27 and c-Src kinase. On the other hand, 5μM HCB delays the cell cycle progression and promotes the formation of the cyclin E-CDK2-p27 protein complex. Our results show that HCB stimulates cell proliferation through cell cycle modulation and c-Src involvement in MCF-7 cells. Here, we report for the first time that differential mechanisms of action of HCB on mammary cell cycle progression are triggered at different concentrations of this pollutant.


Food and Chemical Toxicology | 2017

Arsenite in drinking water produces glucose intolerance in pregnant rats and their female offspring

Maria Marta Bonaventura; Nadia Bourguignon; Marianne Bizzozzero; Diego Rodriguez; Clara Ventura; Claudia Cocca; Carlos Libertun; Victoria Lux-Lantos

Drinking water is the main source of arsenic exposure. Chronic exposure has been associated with metabolic disorders. Here we studied the effects of arsenic on glucose metabolism, in pregnant and post-partum of dams and their offspring. We administered 5 (A5) or 50 (A50) mg/L of sodium arsenite in drinking water to rats from gestational day 1 (GD1) until two months postpartum (2MPP), and to their offspring from weaning until 8 weeks old. Liver arsenic dose-dependently increased in arsenite-treated rats to levels similar to exposed population. Pregnant A50 rats gained less weight than controls and recovered normal weight at 2MPP. Arsenite-treated pregnant animals showed glucose intolerance on GD16-17, with impaired insulin secretion but normal insulin sensitivity; they showed dose-dependent increased pancreas insulin on GD18. All alterations reverted at 2MPP. Offspring from A50-treated mothers showed lower body weight at birth, 4 and 8 weeks of age, and glucose intolerance in adult females, probably due to insulin secretion and sensitivity alterations. Arsenic alters glucose homeostasis during pregnancy by altering beta-cell function, increasing risk of developing gestational diabetes. In pups, it induces low body weight from birth to 8 weeks of age, and glucose intolerance in females, demonstrating a sex specific response.


Toxicology | 2016

Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-β1 signaling, enhancing human breast cancer cell migration and invasion

Noelia Miret; Carolina Pontillo; Clara Ventura; Alejandro Carozzo; Florencia Chiappini; Diana L. Kleiman de Pisarev; Natalia Fernández; Claudia Cocca; Andrea Randi

Given the number of women affected by breast cancer, considerable interest has been raised in understanding the relationships between environmental chemicals and disease onset. Hexachlorobenzene (HCB) is a dioxin-like compound that is widely distributed in the environment and is a weak ligand of the aryl hydrocarbon receptor (AhR). We previously demonstrated that HCB acts as an endocrine disruptor capable of stimulating cell proliferation, migration, invasion, and metastasis in different breast cancer models. In addition, increasing evidence indicates that transforming growth factor-β1 (TGF-β1) can contribute to tumor maintenance and progression. In this context, this work investigated the effect of HCB (0.005, 0.05, 0.5, and 5μM) on TGF-β1 signaling and AhR/TGF-β1 crosstalk in the human breast cancer cell line MDA-MB-231 and analyzed whether TGF-β1 pathways are involved in HCB-induced cell migration and invasion. RT-qPCR results indicated that HCB reduces AhR mRNA expression through TGF-β1 signaling but enhances TGF-β1 mRNA levels involving AhR signaling. Western blot analysis demonstrated that HCB could increase TGF-β1 protein levels and activation, as well as Smad3, JNK, and p38 phosphorylation. In addition, low and high doses of HCB were determined to exert differential effects on AhR protein levels, localization, and activation, with a high dose (5μM) inducing AhR nuclear translocation and AhR-dependent CYP1A1 expression. These findings also revealed that c-Src and AhR are involved in HCB-mediated activation of Smad3. HCB enhances cell migration (scratch motility assay) and invasion (Transwell assay) through the Smad, JNK, and p38 pathways, while ERK1/2 is only involved in HCB-induced cell migration. These results demonstrate that HCB modulates the crosstalk between AhR and TGF-β1 and consequently exacerbates a pro-migratory phenotype in MDA-MB-231 cells, which contributes to a high degree of malignancy. Taken together, our findings help to characterize the molecular mechanism underlying the effects of HCB on breast cancer progression.


Reproductive Toxicology | 2017

Evaluation of sodium arsenite exposure on reproductive competence in pregnant and postlactational dams and their offspring.

Nadia Bourguignon; Maria Marta Bonaventura; Diego Rodriguez; Marianne Bizzozzero; Clara Ventura; Mariel Núñez; Victoria Lux-Lantos; Carlos Libertun

We investigated arsenite exposure on the reproductive axis of dams (during pregnancy and at cyclicity resumption) and their offspring. Pregnant rats were exposed to 5 (A5) or 50ppm (A50) of sodium arsenite in drinking water from gestational day 1 (GD1) until sacrifice at GD18 or two months postpartum. Offspring were exposed to the same treatment as their mothers from weaning to adulthood. A50-pregnant rats gained less weight, showed increased testosterone and estradiol but pregnancy was unaffected. After lactation, arsenic-exposed dams presented compromised cyclicity, decreased estradiol, increased follicle-stimulating hormone (FSH), less preovulatory follicles and presence of ovarian cysts, suggesting impaired reproduction. A50-offspring presented lower body weight; A50-female-offspring showed elevated gonadotropin releasing hormone (GnRH), FSH and testosterone, while A50-males showed diminished GnRH/FSH, but normal testosterone. We conclude that arsenite at the present exposure levels did not compromise pregnancy outcome while it negatively affected reproductive physiology in postpartum dams and their offspring.


The Journal of Steroid Biochemistry and Molecular Biology | 2018

EFFECTS OF THE PESTICIDE CHLORPYRIFOS ON BREAST CANCER DISEASE. IMPLICATION OF EPIGENETIC MECHANISMS

Clara Ventura; C.D. Zappia; M. Lasagna; W. Pavicic; S. Richard; A.D. Bolzan; F. Monczor; Mariel Núñez; Claudia Cocca

Chlorpyrifos (CPF) is an organophosphorus pesticide used for agricultural pest control all over the world. We have previously demonstrated that environmental concentrations of this pesticide alter mammary gland histological structure and hormonal balance in rats chronically exposed. In this work, we analyzed the effects of CPF on mammary tumors development. Our results demonstrated that CPF increases tumor incidence and reduces latency of NMU-induced mammary tumors. Although no changes were observed in tumor growth rate, we found a reduced steroid hormone receptor expression in the tumors of animals exposed to the pesticide. Moreover, we analyzed the role of epigenetic mechanisms in CPF effects. Our results indicated that CPF alters HDAC1 mRNA expression in mammary gland, although no changes were observed in DNA methylation. In summary, we demonstrate that the exposure to CPF promotes mammary tumors development with a reduced steroid receptors expression. It has also been found that CPF affects HDAC1 mRNA levels in mammary tissue pointing that CPF may act as a breast cancer risk factor.

Collaboration


Dive into the Clara Ventura's collaboration.

Top Co-Authors

Avatar

Claudia Cocca

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Andrea Randi

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Mariel Núñez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Noelia Miret

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Carolina Pontillo

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Elena Rivera

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Andrés Venturino

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadia Bourguignon

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge