Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Andriantsiferana is active.

Publication


Featured researches published by Caroline Andriantsiferana.


Ultrasonics Sonochemistry | 2008

Ultrasound in gas-liquid systems : Effects on solubility and mass transfer

Frédéric Laugier; Caroline Andriantsiferana; Anne-Marie Wilhelm; Henri Delmas

The effect of ultrasound on the pseudo-solubility of nitrogen in water and on gas-liquid mass transfer kinetics has been investigated in an autoclave reactor equipped with a gas induced impeller. In order to use organic liquids and to investigate the effect of pressure, gas-liquid mass transfer coefficient was calculated from the evolution of autoclave pressure during gas absorption to avoid any side-effects of ultrasound on the concentrations measurements. Ultrasound effect on the apparent solubility is very low (below 12%). Conversely ultrasound greatly improves gas-liquid mass transfer, especially below gas induction speed, this improvement being boosted by pressure. In typical conditions of organic synthesis: 323 K, 1100 rpm, 10 bar, k(L).a is multiplied by 11 with ultrasound (20 kHz/62.6 W). The impact of sonication is much higher on gassing out than on gassing in. In the same conditions, this enhancement is at least five times higher for degassing.


Environmental Technology | 2014

Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material

Caroline Andriantsiferana; Elham Farouk Mohamed; Henri Delmas

A sequential adsorption/photocatalytic regeneration process to remove tartrazine, an azo-dye in aqueous solution, has been investigated. The aim of this work was to compare the effectiveness of an adsorbent/photocatalyst composite – TiO2 deposited onto activated carbon (AC) – and a simple mixture of powders of TiO2 and AC in same proportion. The composite was an innovative material as the photocatalyst, TiO2, was deposited on the porous surface of a microporous-AC using metal-organic chemical vapour deposition in fluidized bed. The sequential process was composed of two-batch step cycles: every cycle alternated a step of adsorption and a step of photocatalytic oxidation under ultra-violet (365 nm), at 25°C and atmospheric pressure. Both steps, adsorption and photocatalytic oxidation, have been investigated during four cycles. For both materials, the cumulated amounts adsorbed during four cycles corresponded to nearly twice the maximum adsorption capacities qmax proving the photocatalytic oxidation to regenerate the adsorbent. Concerning photocatalytic oxidation, the degree of mineralization was higher with the TiO2/AC composite: for each cycle, the value of the total organic carbon removal was 25% higher than that obtained with the mixture powder. These better photocatalytic performances involved better regeneration than higher adsorbed amounts for cycles 2, 3 and 4. Better performances with this promising material – TiO2 deposited onto AC – compared with TiO2 powder could be explained by the vicinity of photocatalytic and AC adsorption sites.


Environmental Technology | 2011

Competitive adsorption of phenolic compounds from aqueous solution using sludge‐based activated carbon

Elham Farouk Mohamed; Caroline Andriantsiferana; Anne-Marie Wilhelm; Henri Delmas

Preparation of activated carbon from sewage sludge is a promising approach to produce cheap and efficient adsorbent for pollutants removal as well as to dispose of sewage sludge. The first objective of this study was to investigate the physical and chemical properties (BET surface area, ash and elemental content, surface functional groups by Boehm titration and weight loss by thermogravimetric analysis) of the sludge‐based activated carbon (SBAC) so as to give a basic understanding of its structure and to compare to those of two commercial activated carbons, PICA S23 and F22. The second and main objective was to evaluate the performance of SBAC for single and competitive adsorption of four substituted phenols (p‐nitrophenol, p‐chlorophenol, p‐hydroxy benzoic acid and phenol) from their aqueous solutions. The results indicated that, despite moderate micropore and mesopore surface areas, SBAC had remarkable adsorption capacity for phenols, though less than PICA carbons. Uptake of the phenolic compound was found to be dependent on both the porosity and surface chemistry of the carbons. Furthermore, the electronegativity and the hydrophobicity of the adsorbate have significant influence on the adsorption capacity. The Langmuir and Freundlich models were used for the mathematical description of the adsorption equilibrium for single‐solute isotherms. Moreover, the Langmuir–Freundlich model gave satisfactory results for describing multicomponent system isotherms. The capacity of the studied activated carbons to adsorb phenols from a multi‐solute system was in the following order: p‐nitrophenol > p‐chlorophenol > PHBA > phenol.


Journal of Environmental Management | 2010

Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation

Carine Julcour Lebigue; Caroline Andriantsiferana; N’Guessan Krou; Catherine Ayral; Elham Farouk Mohamed; Anne-Marie Wilhelm; Henri Delmas; Laurence Le Coq; Claire Gérente; K.M. Smith; Suangusa Pullket; G.D. Fowler; Nigel Graham

This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles.


Environmental Technology | 2016

Biofiltration technology for the removal of toluene from polluted air using Streptomyces griseus

Elham Farouk Mohamed; Gamal Awad; Caroline Andriantsiferana; Ahmed I. El-Diwany

ABSTRACT Biofiltration technology has been recognized as a promising biotechnology for treating the volatile organic compounds (VOCs) present in polluted air. This study aims to investigate the performance of a biofiltration system of Streptomyces griseus sp. DSM-40759 immobilized on activated carbon (PICA S23) towards the adsorption and degradation of toluene vapour as well as to regenerate the activated carbon in situ. The batch studies were performed using nutrient agar medium and basal salt medium (BSM) for microbial growth. Initially the pre-cultures were incubated at a temperature of 28°C on a rotary shaker at 150 rpm. After two days, the strain S. griseus DSM-40759 was immobilized on a known weight of activated carbon (12 g). The results of biofilter performance showed three different stages with a quick adsorption phase with approximately 95% of toluene removal after 70 min, a slow biotransformation phase by immobilized cells. In the later, the removal efficiency decreased significantly with the extension of time and reached 60% during this stage. Moreover, a final quick removal phase by the immobilized cells had an average removal efficiency of toluene around 95% after 500 min. The toluene degradation was found to be more than 84% after the second cycle and the biofilter was still capable of removing additional toluene. Thus, the results demonstrated the feasibility and reusability of a new biofilter system for toluene removal as well as extending the activated carbons capacity and this could be a potential solution to reuse the activated carbon in industrial application.


Journal of Environmental Engineering | 2013

Competitive Adsorption of p-Hydroxybenzoic Acid and Phenol on Activated Carbon: Experimental Study and Modeling

Caroline Andriantsiferana; Carine Julcour-Lebigue; Carmen Creanga-Manole; Henri Delmas; Anne-Marie Wilhelm

AbstractThe competitive adsorption of phenol and p-hydroxybenzoic acid (4HBA) has been investigated on activated carbon (AC) for a wide range of concentrations under unbuffered conditions. The results show a preferential adsorption of 4HBA, which can be explained by the lower solubility of 4HBA and the electrostatic interactions between the AC and the ionic form of the molecule in this range of pH. The Langmuir isotherm was found suitable to describe the single-component adsorptions, indicating a monolayer adsorption in accordance with the microporous nature of the AC. Then the empirical extended Langmuir model and the predictive ideal adsorption solution theory model have been compared for competitive adsorption. When using parameter values optimized for single pollutants, both models show rather poor agreement with mixture data. However, after fitting the extended Langmuir parameters with the whole data set, better results can be obtained, showing that there is some peculiar behavior of the mixture unde...


Environmental Technology | 2018

Transition metals-incorporated zeolites as environmental catalysts for indoor air ozone decomposition

E. F. Mohamed; G. Awad; H. Zaitan; Caroline Andriantsiferana; M-H. Manero

ABSTRACT The present study aimed to prepare catalysts of Fe- and Cu-loaded zeolite via ion-exchange technique using dilute solutions of metal nitrate precursors followed by calcination at 600°C in the air for 4 h. Commercial zeolite ZSM-5 with specific surface area of 400 m2/g and diameter particle of 1.2–2 mm was used as a parent support. The prepared catalysts were characterized by Fourier transform infrared spectroscopy analysis. The IR absorbed bands of Cu-ZSM-5 and Fe-ZSM-5 revealed a shift in the frequency and a reduction in the intensity framework. This indicates that both catalysts have a significant change in the number of the zeolite structure bonds. The catalytic activity of the prepared materials compared to the parent zeolite was evaluated for the catalytic ozone decomposition. The ozone stream of the initial concentration (13 g/m3) with air flow rate (Q) of 0.18 m3/h was passed through a glass jacket column reactor filled with a fixed bed of 40 g zeolites. It was showed that the ozone removal efficiency by Cu-ZSM-5 and Fe-ZSM-5 was obviously higher than that found with the parent ZSM-5. In terms of O3 removal efficiency, zeolite samples could be ranked as follows: Fe-ZSM-5 > Cu-ZSM-5> parent ZSM-5. The results revealed about 90% O3 removal efficiency for Fe-ZSM-5 and 70% for Cu-ZSM-5 as compared to nearly 40% for the parent zeolite. Consequently, the incorporation of Fe and Cu metals onto the zeolite surface plays a key role for enhancing the gaseous ozone elimination.


Environmental Technology | 2015

Fixed-bed adsorption of toluene on high silica zeolites: experiments and mathematical modelling using LDF approximation and a multisite model.

Nicolas Brodu; Sabine Sochard; Caroline Andriantsiferana; Jean-Stéphane Pic; Marie-Hélène Manero

The adsorption of toluene (TOL) as a target volatile organic compound has been studied experimentally and modelled on various hydrophobic zeolites: Faujasite (FAU), ZSM-5 (Z) and Mordenite (MOR). The influence of the nature of the compensating cation (H+ or Na+) has also been investigated for ZSM-5 zeolite, which is known to possess three kinds of adsorption sites (sinusoidal channels, straight channels and intersections). Type I isotherms observed on FAU, Na-Z and MOR fitted well with the Langmuir model. A deviation from a type I isotherm was observed for H-Z, because of the structure of this zeolite. The Successive Langmuir Model was more successful to fit the ‘bump’ of the experimental curve than the Double Langmuir. Classical shapes were found for MOR, FAU and Na-Z breakthrough curves that were fitted with good accuracy using the Linear Driving Force (LDF) approximation. In the case of H-Z, a change of profile was observed during the dynamic adsorption and the differences seen between the Na-Z and H-Z behaviours were explained by the strong interactions between Na+ and adsorbed TOL at the intersection sites. The Na+ cations prevented reorientation of TOL molecules at the intersection and thereby avoided the filling of the sinusoidal channel segments. Thus, a specific model was developed for fitting the breakthrough curve of H-Z. The model developed took into account these two types of adsorption sites with the overall uptake for each site being given by an LDF approximation.


Chemical Engineering Journal | 2013

Role of Lewis acid sites of ZSM-5 zeolite on gaseous ozone abatement

Nicolas Brodu; Marie-Hélène Manero; Caroline Andriantsiferana; Jean-Stéphane Pic; Héctor Valdés


Environmental Engineering Research | 2015

Sequential adsorption - photocatalytic oxidation process for wastewater treatment using a composite material TiO 2 /activated carbon

Caroline Andriantsiferana; Elham Farouk Mohamed; Henri Delmas

Collaboration


Dive into the Caroline Andriantsiferana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Marie Wilhelm

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Brodu

Intelligence and National Security Alliance

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge