Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam X. Maihofer is active.

Publication


Featured researches published by Adam X. Maihofer.


JAMA Psychiatry | 2014

Assessment of Plasma C-Reactive Protein as a Biomarker of Posttraumatic Stress Disorder Risk

Satish A. Eraly; Caroline M. Nievergelt; Adam X. Maihofer; Donald A. Barkauskas; Nilima Biswas; Agorastos Agorastos; Daniel T. O’Connor; Dewleen G. Baker

IMPORTANCE Posttraumatic stress disorder (PTSD) has been associated in cross-sectional studies with peripheral inflammation. It is not known whether this observed association is the result of PTSD predisposing to inflammation (as sometimes postulated) or to inflammation predisposing to PTSD. OBJECTIVE To determine whether plasma concentration of the inflammatory marker C-reactive protein (CRP) helps predict PTSD symptoms. DESIGN, SETTING, AND PARTICIPANTS The Marine Resiliency Study, a prospective study of approximately 2600 war zone-deployed Marines, evaluated PTSD symptoms and various physiological and psychological parameters before deployment and at approximately 3 and 6 months following a 7-month deployment. Participants were recruited from 4 all-male infantry battalions imminently deploying to a war zone. Participation was requested of 2978 individuals; 2610 people (87.6%) consented and 2555 (85.8%) were included in the present analysis. Postdeployment data on combat-related trauma were included for 2208 participants (86.4% of the 2555 included) and on PTSD symptoms at 3 and 6 months after deployment for 1861 (72.8%) and 1617 (63.3%) participants, respectively. MAIN OUTCOMES AND MEASURES Severity of PTSD symptoms 3 months after deployment assessed by the Clinician-Administered PTSD Scale (CAPS). RESULTS We determined the effects of baseline plasma CRP concentration on postdeployment CAPS using zero-inflated negative binomial regression (ZINBR), a procedure designed for distributions, such as CAPS in this study, that have an excess of zeroes in addition to being positively skewed. Adjusting for the baseline CAPS score, trauma exposure, and other relevant covariates, we found baseline plasma CRP concentration to be a highly significant overall predictor of postdeployment CAPS scores (P = .002): each 10-fold increment in CRP concentration was associated with an odds ratio of nonzero outcome (presence vs absence of any PTSD symptoms) of 1.51 (95% CI, 1.15-1.97; P = .003) and a fold increase in outcome with a nonzero value (extent of symptoms when present) of 1.06 (95% CI, 0.99-1.14; P = .09). CONCLUSIONS AND RELEVANCE A marker of peripheral inflammation, plasma CRP may be prospectively associated with PTSD symptom emergence, suggesting that inflammation may predispose to PTSD.


Psychoneuroendocrinology | 2015

Genomic predictors of combat stress vulnerability and resilience in U.S. Marines: A genome-wide association study across multiple ancestries implicates PRTFDC1 as a potential PTSD gene

Caroline M. Nievergelt; Adam X. Maihofer; Maja Mustapic; Kate A. Yurgil; Nicholas J. Schork; Mark W. Miller; Mark W. Logue; Mark A. Geyer; Victoria B. Risbrough; Daniel T. O’Connor; Dewleen G. Baker

BACKGROUND Research on the etiology of post-traumatic stress disorder (PTSD) has rapidly matured, moving from candidate gene studies to interrogation of the entire human genome in genome-wide association studies (GWAS). Here we present the results of a GWAS performed on samples from combat-exposed U.S. Marines and Sailors from the Marine Resiliency Study (MRS) scheduled for deployment to Iraq and/or Afghanistan. The MRS is a large, prospective study with longitudinal follow-up designed to identify risk and resiliency factors for combat-induced stress-related symptoms. Previously implicated PTSD risk loci from the literature and polygenic risk scores across psychiatric disorders were also evaluated in the MRS cohort. METHODS Participants (N=3494) were assessed using the Clinician-Administered PTSD Scale and diagnosed using the DSM-IV diagnostic criterion. Subjects with partial and/or full PTSD diagnosis were called cases, all other subjects were designated controls, and study-wide maximum CAPS scores were used for longitudinal assessments. Genomic DNA was genotyped on the Illumina HumanOmniExpressExome array. Individual genetic ancestry was determined by supervised cluster analysis for subjects of European, African, Hispanic/Native American, and other descent. To test for association of SNPs with PTSD, logistic regressions were performed within each ancestry group and results were combined in meta-analyses. Measures of childhood and adult trauma were included to test for gene-by-environment (GxE) interactions. Polygenic risk scores from the Psychiatric Genomic Consortium were used for major depressive disorder (MDD), bipolar disorder (BPD), and schizophrenia (SCZ). RESULTS The array produced >800K directly genotyped and >21M imputed markers in 3494 unrelated, trauma-exposed males, of which 940 were diagnosed with partial or full PTSD. The GWAS meta-analysis identified the phosphoribosyl transferase domain containing 1 gene (PRTFDC1) as a genome-wide significant PTSD locus (rs6482463; OR=1.47, SE=0.06, p=2.04×10(-9)), with a similar effect across ancestry groups. Association of PRTFDC1 with PTSD in an independent military cohort showed some evidence for replication. Loci with suggestive evidence of association (n=25 genes, p<5×10(-6)) further implicated genes related to immune response and the ubiquitin system, but these findings remain to be replicated in larger GWASs. A replication analysis of 25 putative PTSD genes from the literature found nominally significant SNPs for the majority of these genes, but associations did not remain significant after correction for multiple comparison. A cross-disorder analysis of polygenic risk scores from GWASs of BPD, MDD, and SCZ found that PTSD diagnosis was associated with risk sores of BPD, but not with MDD or SCZ. CONCLUSIONS This first multi-ethnic/racial GWAS of PTSD highlights the potential to increase power through meta-analyses across ancestry groups. We found evidence for PRTFDC1 as a potential novel PTSD gene, a finding that awaits further replication. Our findings indicate that the genetic architecture of PTSD may be determined by many SNPs with small effects, and overlap with other neuropsychiatric disorders, consistent with current findings from large GWAS of other psychiatric disorders.


Molecular Psychiatry | 2015

Gene networks specific for innate immunity define post-traumatic stress disorder.

Michael S. Breen; Adam X. Maihofer; Stephen J. Glatt; Daniel S. Tylee; Sharon D. Chandler; Ming T. Tsuang; Victoria B. Risbrough; Dewleen G. Baker; Daniel T. O'Connor; Caroline M. Nievergelt; Christopher H. Woelk

The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.


Investigative Genetics | 2013

Inference of human continental origin and admixture proportions using a highly discriminative ancestry informative 41-SNP panel.

Caroline M. Nievergelt; Adam X. Maihofer; Tatyana Shekhtman; Ondrej Libiger; Xudong Wang; Kenneth K. Kidd; Judith R. Kidd

BackgroundAccurate determination of genetic ancestry is of high interest for many areas such as biomedical research, personal genomics and forensics. It remains an important topic in genetic association studies, as it has been shown that population stratification, if not appropriately considered, can lead to false-positive and -negative results. While large association studies typically extract ancestry information from available genome-wide SNP genotypes, many important clinical data sets on rare phenotypes and historical collections assembled before the GWAS area are in need of a feasible method (i.e., ease of genotyping, small number of markers) to infer the geographic origin and potential admixture of the study subjects. Here we report on the development, application and limitations of a small, multiplexable ancestry informative marker (AIM) panel of SNPs (or AISNP) developed specifically for this purpose.ResultsBased on worldwide populations from the HGDP, a 41-AIM AISNP panel for multiplex application with the ABI SNPlex and a subset with 31 AIMs for the Sequenome iPLEX system were selected and found to be highly informative for inferring ancestry among the seven continental regions Africa, the Middle East, Europe, Central/South Asia, East Asia, the Americas and Oceania. The panel was found to be least informative for Eurasian populations, and additional AIMs for a higher resolution are suggested. A large reference set including over 4,000 subjects collected from 120 global populations was assembled to facilitate accurate ancestry determination. We show practical applications of this AIM panel, discuss its limitations for admixed individuals and suggest ways to incorporate ancestry information into genetic association studies.ConclusionWe demonstrated the utility of a small AISNP panel specifically developed to discern global ancestry. We believe that it will find wide application because of its feasibility and potential for a wide range of applications.


JAMA Psychiatry | 2016

Genome-wide Association Studies of Posttraumatic Stress Disorder in 2 Cohorts of US Army Soldiers

Murray B. Stein; Chia-Yen Chen; Robert J. Ursano; Tianxi Cai; Joel Gelernter; Steven G. Heeringa; Sonia Jain; Kevin P. Jensen; Adam X. Maihofer; Colter Mitchell; Caroline M. Nievergelt; Matthew K. Nock; Benjamin M. Neale; Renato Polimanti; Stephan Ripke; Xiaoying Sun; Michael L. Thomas; Qian Wang; Erin B. Ware; Susan Borja; Ronald C. Kessler; Jordan W. Smoller

IMPORTANCE Posttraumatic stress disorder (PTSD) is a prevalent, serious public health concern, particularly in the military. The identification of genetic risk factors for PTSD may provide important insights into the biological foundation of vulnerability and comorbidity. OBJECTIVE To discover genetic loci associated with the lifetime risk for PTSD in 2 cohorts from the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). DESIGN, SETTING, AND PARTICIPANTS Two coordinated genome-wide association studies of mental health in the US military contributed participants. The New Soldier Study (NSS) included 3167 unique participants with PTSD and 4607 trauma-exposed control individuals; the Pre/Post Deployment Study (PPDS) included 947 unique participants with PTSD and 4969 trauma-exposed controls. The NSS data were collected from February 1, 2011, to November 30, 2012; the PDDS data, from January 9 to April 30, 2012. The primary analysis compared lifetime DSM-IV PTSD cases with trauma-exposed controls without lifetime PTSD. Data were analyzed from March 18 to December 27, 2015. MAIN OUTCOMES AND MEASURES Association analyses for PTSD used logistic regression models within each of 3 ancestral groups (European, African, and Latino American) by study, followed by meta-analysis. Heritability and genetic correlation and pleiotropy with other psychiatric and immune-related disorders were estimated. RESULTS The NSS population was 80.7% male (6277 of 7774 participants; mean [SD] age, 20.9 [3.3] years); the PPDS population, 94.4% male (5583 of 5916 participants; mean [SD] age, 26.5 [6.0] years). A genome-wide significant locus was found in ANKRD55 on chromosome 5 (rs159572; odds ratio [OR], 1.62; 95% CI, 1.37-1.92; P = 2.34 × 10-8) and persisted after adjustment for cumulative trauma exposure (adjusted OR, 1.64; 95% CI, 1.39-1.95; P = 1.18 × 10-8) in the African American samples from the NSS. A genome-wide significant locus was also found in or near ZNF626 on chromosome 19 (rs11085374; OR, 0.77; 95% CI, 0.70-0.85; P = 4.59 × 10-8) in the European American samples from the NSS. Similar results were not found for either single-nucleotide polymorphism in the corresponding ancestry group from the PPDS sample, in other ancestral groups, or in transancestral meta-analyses. Single-nucleotide polymorphism-based heritability was nonsignificant, and no significant genetic correlations were observed between PTSD and 6 mental disorders or 9 immune-related disorders. Significant evidence of pleiotropy was observed between PTSD and rheumatoid arthritis and, to a lesser extent, psoriasis. CONCLUSIONS AND RELEVANCE In the largest genome-wide association study of PTSD to date, involving a US military sample, limited evidence of association for specific loci was found. Further efforts are needed to replicate the genome-wide significant association with ANKRD55-associated in prior research with several autoimmune and inflammatory disorders-and to clarify the nature of the genetic overlap observed between PTSD and rheumatoid arthritis and psoriasis.


JAMA Psychiatry | 2015

Association of Predeployment Heart Rate Variability With Risk of Postdeployment Posttraumatic Stress Disorder in Active-Duty Marines

Arpi Minassian; Adam X. Maihofer; Dewleen G. Baker; Caroline M. Nievergelt; Mark A. Geyer; Victoria B. Risbrough

IMPORTANCE Disrupted autonomic nervous system functioning as measured by heart rate variability (HRV) has been associated with posttraumatic stress disorder (PTSD). It is not clear, however, whether reduced HRV before trauma exposure contributes to the risk for development of PTSD. OBJECTIVE To examine whether HRV before combat deployment is associated with increased risk of a PTSD diagnosis after deployment when accounting for deployment-related combat exposure. DESIGN, SETTING, AND PARTICIPANTS Between July 14, 2008, and May 24, 2012, active-duty Marines were assessed 1 to 2 months before a combat deployment and again 4 to 6 months after their return. The first phase of the Marine Resiliency Study (MRS-I) included 1415 male Marines, 59 of whom developed PTSD after deployment. Participants in the second phase of the Marine Resiliency Study (MRS-II) included 745 male Marines, 25 of whom developed PTSD after deployment. Analysis was conducted from November 25, 2013, to April 16, 2015. MAIN OUTCOMES AND MEASURES Predeployment HRV was measured via finger photoplethysmography during a 5-minute period of rest. Frequency-domain measures of HRV were generated. Diagnosis of PTSD was determined using the Clinician-Administered PTSD Scale. RESULTS After accounting for deployment-related combat exposure, lower HRV before deployment as measured by an increased low-frequency (LF) to high-frequency (HF) ratio of HRV was associated with risk of PTSD diagnosis after deployment (combined MRS-I and MRS-II cohort meta-analysis odds ratio, 1.47; 95% CI, 1.10-1.98; P = .01). The prevalence of postdeployment PTSD was higher in participants with high predeployment LF:HF ratios (15.8% [6 of 38 participants]) compared with participants who did not have high LF:HF ratios (3.7% [78 of 2122 participants]). CONCLUSIONS AND RELEVANCE This prospective longitudinal study provides initial and modest evidence that an altered state of autonomic nervous system functioning contributes to PTSD vulnerability, taking into account other key risk factors. If these findings are replicated, interventions that change autonomic nervous system function may open novel opportunities for prevention and treatment of PTSD.


Ndt Plus | 2016

Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling

Vibha Bhatnagar; Erin Richard; Wei Wu; Caroline M. Nievergelt; Michael S. Lipkowitz; Janina M. Jeff; Adam X. Maihofer; Sanjay K. Nigam

Background In the setting of chronic kidney disease (CKD), altered extra-renal urate handling may be necessary to regulate plasma uric acid. The Remote Sensing and Signaling Hypothesis (Nigam S. What do drug transporters really do? Nat Rev Drug Discov 2015; 14: 29–44) suggests that multispecific solute carrier (SLC) and ATP-binding cassette (ABC) drug transporters in different tissues are part of an inter-organ communication system that maintains levels of urate and other metabolites after organ injury. Methods Data from the Chronic Renal Insufficiency Cohort (CRIC; n = 3598) were used to study associations between serum uric acid and single nucleotide polymorphisms (SNPs) on the following uric acid transporters: ABCG2 (BRCP), SLC22A6 (OAT1), SLC22A8 (OAT3), SLC22A10 (OAT5), SLC22A11 (OAT4), SLC22A12 (URAT1), SLC22A13 (OAT10), SLC17A1-A3 (NPTs), SLC2A9 (GLUT9), ABCC2 (MRP2) and ABCC4 (MRP4). Regression models, controlling for principal components age, gender and renal function, were run separately for those of European (EA) and African ancestry (AA), and P-values corrected for multiple comparisons. A twin cohort with participants of EA and normal renal function was used for comparison. Results Among those of EA in CRIC, statistically significant signals were observed for SNPs in ABCG2 (rs4148157; beta-coefficient = 0.68; P = 4.78E-13) and SNPs in SLC2A9 (rs13125646; beta-coefficient = −0.30; P = 1.06E-5). Among those of AA, the strongest (but not statistically significant) signals were observed for SNPs in SLC2A9, followed by SNPs in ABCG2. In the twin study (normal renal function), only SNPs in SLC2A9 were significant (rs4481233; beta-coefficient=−0.45; P = 7.0E-6). In CRIC, weaker associations were also found for SLC17A3 (NPT4) and gender-specific associations found for SLC22A8 (OAT3), SLC22A11 (OAT4), and ABCC4 (MRP4). Conclusions In patients of EA with CKD (CRIC cohort), we found striking associations between uric acid and SNPs on ABCG2, a key transporter of uric acid by intestine. Compared with ABCG2, SLC2A9 played a much less significant role in this subset of patients with CKD. SNPs in other SLC (e.g. SLC22A8 or OAT3) and ABC (e.g. ABCC4 or MRP4) genes appear to make a weak gender-dependent contribution to uric acid homeostasis in CKD. As renal urate transport is affected in the setting of declining kidney function, extra-renal ABCG2 appears to play a compensatory role—a notion consistent with animal studies and the Remote Sensing and Signaling Hypothesis. Overall, the data indicate how different urate transporters become more or less important depending on renal function, ethnicity and gender. Therapies focused on enhancing ABCG2 urate handling may be helpful in the setting of CKD and hyperuricemia.


Molecular Psychiatry | 2017

Longitudinal analyses of the DNA methylome in deployed military servicemen identify susceptibility loci for post-traumatic stress disorder.

Bart P.F. Rutten; Eric Vermetten; Christiaan H. Vinkers; Gianluca Ursini; Nikolaos P. Daskalakis; E. Pishva; L. De Nijs; Lotte C. Houtepen; Lars Eijssen; Andrew E. Jaffe; Gunter Kenis; Wolfgang Viechtbauer; D.L.A. van den Hove; Karla-Gerlinde Schraut; K.P. Lesch; Joel E. Kleinman; Thomas M. Hyde; D.R. Weinberger; Leonard C. Schalkwyk; Katie Lunnon; Jonathan Mill; Hagit Cohen; Rachel Yehuda; Dewleen G. Baker; Adam X. Maihofer; Caroline M. Nievergelt; Elbert Geuze; Marco P. Boks

In order to determine the impact of the epigenetic response to traumatic stress on post-traumatic stress disorder (PTSD), this study examined longitudinal changes of genome-wide blood DNA methylation profiles in relation to the development of PTSD symptoms in two prospective military cohorts (one discovery and one replication data set). In the first cohort consisting of male Dutch military servicemen (n=93), the emergence of PTSD symptoms over a deployment period to a combat zone was significantly associated with alterations in DNA methylation levels at 17 genomic positions and 12 genomic regions. Evidence for mediation of the relation between combat trauma and PTSD symptoms by longitudinal changes in DNA methylation was observed at several positions and regions. Bioinformatic analyses of the reported associations identified significant enrichment in several pathways relevant for symptoms of PTSD. Targeted analyses of the significant findings from the discovery sample in an independent prospective cohort of male US marines (n=98) replicated the observed relation between decreases in DNA methylation levels and PTSD symptoms at genomic regions in ZFP57, RNF39 and HIST1H2APS2. Together, our study pinpoints three novel genomic regions where longitudinal decreases in DNA methylation across the period of exposure to combat trauma marks susceptibility for PTSD.


American Journal of Medical Genetics | 2017

Epigenome-wide association of PTSD from heterogeneous cohorts with a common multi-site analysis pipeline.

Andrew Ratanatharathorn; Marco P. Boks; Adam X. Maihofer; Allison E. Aiello; Ananda B. Amstadter; Allison E. Ashley-Koch; Dewleen G. Baker; Jean C. Beckham; Evelyn J. Bromet; Michelle F. Dennis; Melanie E. Garrett; Elbert Geuze; Guia Guffanti; Michael A. Hauser; Varun Kilaru; Nathan A. Kimbrel; Karestan C. Koenen; Pei Fen Kuan; Mark W. Logue; Benjamin J. Luft; Mark W. Miller; Colter Mitchell; Nicole R. Nugent; Kerry J. Ressler; Bart P.F. Rutten; Murray B. Stein; Eric Vermetten; Christiaan H. Vinkers; Nagy A. Youssef; Monica Uddin

Compelling evidence suggests that epigenetic mechanisms such as DNA methylation play a role in stress regulation and in the etiologic basis of stress related disorders such as Post traumatic Stress Disorder (PTSD). Here we describe the purpose and methods of an international consortium that was developed to study the role of epigenetics in PTSD. Inspired by the approach used in the Psychiatric Genomics Consortium, we brought together investigators representing seven cohorts with a collective sample size of N = 1147 that included detailed information on trauma exposure, PTSD symptoms, and genome‐wide DNA methylation data. The objective of this consortium is to increase the analytical sample size by pooling data and combining expertise so that DNA methylation patterns associated with PTSD can be identified. Several quality control and analytical pipelines were evaluated for their control of genomic inflation and technical artifacts with a joint analysis procedure established to derive comparable data over the cohorts for meta‐analysis. We propose methods to deal with ancestry population stratification and type I error inflation and discuss the advantages and disadvantages of applying robust error estimates. To evaluate our pipeline, we report results from an epigenome‐wide association study (EWAS) of age, which is a well‐characterized phenotype with known epigenetic associations. Overall, while EWAS are highly complex and subject to similar challenges as genome‐wide association studies (GWAS), we demonstrate that an epigenetic meta‐analysis with a relatively modest sample size can be well‐powered to identify epigenetic associations. Our pipeline can be used as a framework for consortium efforts for EWAS.


Journal of the American College of Cardiology | 2014

Genetic Implication of a Novel Thiamine Transporter in Human Hypertension

Kuixing Zhang; Matthew J. Huentelman; Fangwen Rao; Eric I. Sun; Jason J. Corneveaux; Andrew J. Schork; Zhiyun Wei; Jill Waalen; Jose Pablo Miramontes-Gonzalez; C. Makena Hightower; Adam X. Maihofer; Manjula Mahata; Tomi Pastinen; Georg B. Ehret; Nicholas J. Schork; Eleazar Eskin; Caroline M. Nievergelt; Milton H. Saier; Daniel T. O'Connor

OBJECTIVES This study coupled 2 strategies-trait extremes and genome-wide pooling-to discover a novel blood pressure (BP) locus that encodes a previously uncharacterized thiamine transporter. BACKGROUND Hypertension is a heritable trait that remains the most potent and widespread cardiovascular risk factor, although details of its genetic determination are poorly understood. METHODS Representative genomic deoxyribonucleic acid (DNA) pools were created from male and female subjects in the highest- and lowest-fifth percentiles of BP in a primary care population of >50,000 patients. The peak associated single-nucleotide polymorphisms were typed in individual DNA samples, as well as in twins/siblings phenotyped for cardiovascular and autonomic traits. Biochemical properties of the associated transporter were evaluated in cellular assays. RESULTS After chip hybridization and calculation of relative allele scores, the peak associations were typed in individual samples, revealing an association between hypertension, systolic BP, and diastolic BP and the previously uncharacterized solute carrier SLC35F3. The BP genetic association at SLC35F3 was validated by meta-analysis in an independent sample from the original source population, as well as the International Consortium for Blood Pressure Genome-Wide Association Studies (across North America and western Europe). Sequence homology to a putative yeast thiamine (vitamin B1) transporter prompted us to express human SLC35F3 in Escherichia coli, which catalyzed [(3)H]-thiamine uptake. SLC35F3 risk-allele homozygotes (T/T) displayed decreased erythrocyte thiamine content on microbiological assay. In twin pairs, the SLC35F3 risk allele predicted heritable cardiovascular traits previously associated with thiamine deficiency, including elevated cardiac stroke volume with decreased vascular resistance, and elevated pressor responses to environmental (cold) stress. Allelic expression imbalance confirmed that cis variation at the human SLC35F3 locus influenced expression of that gene, and the allelic expression imbalance peak coincided with the hypertension peak. CONCLUSIONS Novel strategies were coupled to position a new hypertension-susceptibility locus, uncovering a previously unsuspected thiamine transporter whose genetic variants predicted several disturbances in cardiac and autonomic function. The results have implications for the pathogenesis and treatment of systemic hypertension.

Collaboration


Dive into the Adam X. Maihofer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fangwen Rao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge