Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Pont is active.

Publication


Featured researches published by Caroline Pont.


Genome Research | 2010

Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution

Florent Murat; Jian-Hong Xu; Eric Tannier; Michael Abrouk; Nicolas Guilhot; Caroline Pont; Joachim Messing; Jérôme Salse

The comparison of the chromosome numbers of todays species with common reconstructed paleo-ancestors has led to intense speculation of how chromosomes have been rearranged over time in mammals. However, similar studies in plants with respect to genome evolution as well as molecular mechanisms leading to mosaic synteny blocks have been lacking due to relevant examples of evolutionary zooms from genomic sequences. Such studies require genomes of species that belong to the same family but are diverged to fall into different subfamilies. Our most important crops belong to the family of the grasses, where a number of genomes have now been sequenced. Based on detailed paleogenomics, using inference from n = 5-12 grass ancestral karyotypes (AGKs) in terms of gene content and order, we delineated sequence intervals comprising a complete set of junction break points of orthologous regions from rice, maize, sorghum, and Brachypodium genomes, representing three different subfamilies and different polyploidization events. By focusing on these sequence intervals, we could show that the chromosome number variation/reduction from the n = 12 common paleo-ancestor was driven by nonrandom centric double-strand break repair events. It appeared that the centromeric/telomeric illegitimate recombination between nonhomologous chromosomes led to nested chromosome fusions (NCFs) and synteny break points (SBPs). When intervals comprising NCFs were compared in their structure, we concluded that SBPs (1) were meiotic recombination hotspots, (2) corresponded to high sequence turnover loci through repeat invasion, and (3) might be considered as hotspots of evolutionary novelty that could act as a reservoir for producing adaptive phenotypes.


Trends in Plant Science | 2010

Palaeogenomics of plants: synteny-based modelling of extinct ancestors

Michael Abrouk; Florent Murat; Caroline Pont; Joachim Messing; Scott A. Jackson; Thomas Faraut; Eric Tannier; Christophe Plomion; Richard Cooke; Catherine Feuillet; Jérôme Salse

In the past ten years, international initiatives have led to the development of large sets of genomic resources that allow comparative genomic studies between plant genomes at a high level of resolution. Comparison of map-based genomic sequences revealed shared intra-genomic duplications, providing new insights into the evolution of flowering plant genomes from common ancestors. Plant genomes can be presented as concentric circles, providing a new reference for plant chromosome evolutionary relationships and an efficient tool for gene annotation and cross-genome markers development. Recent palaeogenomic data demonstrate that whole-genome duplications have provided a motor for the evolutionary success of flowering plants over the last 50-70 million years.


Plant Journal | 2011

Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution

Umar Masood Quraishi; Michael Abrouk; Florent Murat; Caroline Pont; Séverine Foucrier; Gregory Desmaizieres; Carole Confolent; Nathalie Rivière; Gilles Charmet; Etienne Paux; Alain Murigneux; Laurent Guerreiro; Stéphane Lafarge; Jacques Le Gouis; Catherine Feuillet; Jérôme Salse

Monitoring nitrogen use efficiency (NUE) in plants is becoming essential to maintain yield while reducing fertilizer usage. Optimized NUE application in major crops is essential for long-term sustainability of agriculture production. Here, we report the precise identification of 11 major chromosomal regions controlling NUE in wheat that co-localise with key developmental genes such as Ppd (photoperiod sensitivity), Vrn (vernalization requirement), Rht (reduced height) and can be considered as robust markers from a molecular breeding perspective. Physical mapping, sequencing, annotation and candidate gene validation of an NUE metaQTL on wheat chromosome 3B allowed us to propose that a glutamate synthase (GoGAT) gene that is conserved structurally and functionally at orthologous positions in rice, sorghum and maize genomes may contribute to NUE in wheat and other cereals. We propose an evolutionary model for the NUE locus in cereals from a common ancestral region, involving species specific shuffling events such as gene deletion, inversion, transposition and the invasion of repetitive elements.


BMC Genomics | 2008

New insights into the origin of the B genome of hexaploid wheat: Evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides

Jérôme Salse; Véronique Chagué; Stéphanie Bolot; Ghislaine Magdelenat; Cécile Huneau; Caroline Pont; Harry Belcram; Arnaud Couloux; Soazic Gardais; Aurélie Evrard; Béatrice Segurens; Mathieu Charles; Catherine Ravel; Sylvie Samain; Gilles Charmet; Nathalie Boudet; Boulos Chalhoub

BackgroundSeveral studies suggested that the diploid ancestor of the B genome of tetraploid and hexaploid wheat species belongs to the Sitopsis section, having Aegilops speltoides (SS, 2n = 14) as the closest identified relative. However molecular relationships based on genomic sequence comparison, including both coding and non-coding DNA, have never been investigated. In an attempt to clarify these relationships, we compared, in this study, sequences of the Storage Protein Activator (SPA) locus region of the S genome of Ae. speltoides (2n = 14) to that of the A, B and D genomes co-resident in the hexaploid wheat species (Triticum aestivum, AABBDD, 2n = 42).ResultsFour BAC clones, spanning the SPA locus of respectively the A, B, D and S genomes, were isolated and sequenced. Orthologous genomic regions were identified as delimited by shared non-transposable elements and non-coding sequences surrounding the SPA gene and correspond to 35 268, 22 739, 43 397 and 53 919 bp for the A, B, D and S genomes, respectively. Sequence length discrepancies within and outside the SPA orthologous regions are the result of non-shared transposable elements (TE) insertions, all of which inserted after the progenitors of the four genomes divergence.ConclusionOn the basis of conserved sequence length as well as identity of the shared non-TE regions and the SPA coding sequence, Ae speltoides appears to be more evolutionary related to the B genome of T. aestivum than the A and D genomes. However, the differential insertions of TEs, none of which are conserved between the two genomes led to the conclusion that the S genome of Ae. speltoides has diverged very early from the progenitor of the B genome which remains to be identified.


Genome Biology | 2011

RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.)

Caroline Pont; Florent Murat; Carole Confolent; Sandrine Balzergue; Jérôme Salse

BackgroundWhole genome duplication is a common evolutionary event in plants. Bread wheat (Triticum aestivum L.) is a good model to investigate the impact of paleo- and neoduplications on the organization and function of modern plant genomes.ResultsWe performed an RNA sequencing-based inference of the grain filling gene network in bread wheat and identified a set of 37,695 non-redundant sequence clusters, which is an unprecedented resolution corresponding to an estimated half of the wheat genome unigene repertoire. Using the Brachypodium distachyon genome as a reference for the Triticeae, we classified gene clusters into orthologous, paralogous, and homoeologous relationships. Based on this wheat gene evolutionary classification, older duplicated copies (dating back 50 to 70 million years) exhibit more than 80% gene loss and expression divergence while recent duplicates (dating back 1.5 to 3 million years) show only 54% gene loss and 36 to 49% expression divergence.ConclusionsWe suggest that structural shuffling due to duplicated gene loss is a rapid process, whereas functional shuffling due to neo- and/or subfunctionalization of duplicates is a longer process, and that both shuffling mechanisms drive functional redundancy erosion. We conclude that, as a result of these mechanisms, half the gene duplicates in plants are structurally and functionally altered within 10 million years of evolution, and the diploidization process is completed after 45 to 50 million years following polyploidization.


Plant Journal | 2013

Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo‐ and neoduplicated subgenomes

Caroline Pont; Florent Murat; Sébastien Guizard; Raphael Flores; Séverine Foucrier; Yannick Bidet; Umar Masood Quraishi; Michael Alaux; Jaroslav Doležel; Tzion Fahima; Hikmet Budak; Beat Keller; Silvio Salvi; Marco Maccaferri; Delphine Steinbach; Catherine Feuillet; Hadi Quesneville; Jérôme Salse

Bread wheat derives from a grass ancestor structured in seven protochromosomes followed by a paleotetraploidization to reach a 12 chromosomes intermediate and a neohexaploidization (involving subgenomes A, B and D) event that finally shaped the 21 modern chromosomes. Insights into wheat syntenome in sequencing conserved orthologous set (COS) genes unravelled differences in genomic structure (such as gene conservation and diversity) and genetical landscape (such as recombination pattern) between ancestral as well as recent duplicated blocks. Contrasted evolutionary plasticity is observed where the B subgenome appears more sensitive (i.e. plastic) in contrast to A as dominant (i.e. stable) in response to the neotetraploidization and D subgenome as supra-dominant (i.e. pivotal) in response to the neohexaploidization event. Finally, the wheat syntenome, delivered through a public web interface PlantSyntenyViewer at http://urgi.versailles.inra.fr/synteny-wheat, can be considered as a guide for accelerated dissection of major agronomical traits in wheat.


Functional & Integrative Genomics | 2011

Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.)

Umar Masood Quraishi; Florent Murat; Mickael Abrouk; Caroline Pont; Carole Confolent; François Xavier Oury; Jane L. Ward; Danuta Boros; Kurt Gebruers; Jan A. Delcour; Christophe M. Courtin; Zoltán Bedo; Luc Saulnier; Fabienne Guillon; Sandrine Balzergue; Peter R. Shewry; Catherine Feuillet; Gilles Charmet; Jérôme Salse

Grain dietary fiber content in wheat not only affects its end use and technological properties including milling, baking and animal feed but is also of great importance for health benefits. In this study, integration of association genetics (seven detected loci on chromosomes 1B, 3A, 3D, 5B, 6B, 7A, 7B) and meta-QTL (three consensus QTL on chromosomes 1B, 3D and 6B) analyses allowed the identification of seven chromosomal regions underlying grain dietary fiber content in bread wheat. Based either on a diversity panel or on bi-parental populations, we clearly demonstrate that this trait is mainly driven by a major locus located on chromosome 1B associated with a log of p value >13 and a LOD score >8, respectively. In parallel, we identified 73 genes differentially expressed during the grain development and between genotypes with contrasting grain fiber contents. Integration of quantitative genetics and transcriptomic data allowed us to propose a short list of candidate genes that are conserved in the rice, sorghum and Brachypodium chromosome regions orthologous to the seven wheat grain fiber content QTL and that can be considered as major candidate genes for future improvement of the grain dietary fiber content in bread wheat breeding programs.


Genome Biology and Evolution | 2014

Shared Subgenome Dominance Following Polyploidization Explains Grass Genome Evolutionary Plasticity from a Seven Protochromosome Ancestor with 16K Protogenes

Florent Murat; Rongzhi Zhang; Sébastien Guizard; Raphael Flores; Alix Armero; Caroline Pont; Delphine Steinbach; Hadi Quesneville; Richard Cooke; Jérôme Salse

Modern plant genomes are diploidized paleopolyploids. We revisited grass genome paleohistory in response to the diploidization process through a detailed investigation of the evolutionary fate of duplicated blocks. Ancestrally duplicated genes can be conserved, deleted, and shuffled, defining dominant (bias toward duplicate retention) and sensitive (bias toward duplicate erosion) chromosomal fragments. We propose a new grass genome paleohistory deriving from an ancestral karyotype structured in seven protochromosomes containing 16,464 protogenes and following evolutionary rules where 1) ancestral shared polyploidizations shaped conserved dominant (D) and sensitive (S) subgenomes, 2) subgenome dominance is revealed by both gene deletion and shuffling from the S blocks, 3) duplicate deletion/movement may have been mediated by single-/double-stranded illegitimate recombination mechanisms, 4) modern genomes arose through centromeric fusion of protochromosomes, leading to functional monocentric neochromosomes, 5) the fusion of two dominant blocks leads to supradominant neochromosomes (D + D = D) with higher ancestral gene retention compared with D + S = D (i.e., fusion of blocks with opposite sensitivity) or even S + S = S (i.e., fusion of two sensitive ancestral blocks). A new user-friendly online tool named “PlantSyntenyViewer,” available at http://urgi.versailles.inra.fr/synteny-cereal, presents the refined comparative genomics data.


Plant Physiology | 2015

FRIZZY PANICLE Drives Supernumerary Spikelets in Bread Wheat

Oxana Dobrovolskaya; Caroline Pont; Richard Sibout; Petr Martinek; E. D. Badaeva; Florent Murat; Audrey Chosson; Nobuyoshi Watanabe; Elisa Prat; Nadine Gautier; Véronique Gautier; Charles Poncet; Yuriy L. Orlov; Alexander A. Krasnikov; Hélène Bergès; E. A. Salina; Lyudmila Laikova; Jérôme Salse

Wheat transcription factors located on chromosome group 2 drive the yield-related production of supernumerary spikelets. Bread wheat (Triticum aestivum) inflorescences, or spikes, are characteristically unbranched and normally bear one spikelet per rachis node. Wheat mutants on which supernumerary spikelets (SSs) develop are particularly useful resources for work towards understanding the genetic mechanisms underlying wheat inflorescence architecture and, ultimately, yield components. Here, we report the characterization of genetically unrelated mutants leading to the identification of the wheat FRIZZY PANICLE (FZP) gene, encoding a member of the APETALA2/Ethylene Response Factor transcription factor family, which drives the SS trait in bread wheat. Structural and functional characterization of the three wheat FZP homoeologous genes (WFZP) revealed that coding mutations of WFZP-D cause the SS phenotype, with the most severe effect when WFZP-D lesions are combined with a frameshift mutation in WFZP-A. We provide WFZP-based resources that may be useful for genetic manipulations with the aim of improving bread wheat yield by increasing grain number.


The Plant Cell | 2012

Grass MicroRNA Gene Paleohistory Unveils New Insights into Gene Dosage Balance in Subgenome Partitioning after Whole-Genome Duplication

Michael Abrouk; Rongzhi Zhang; Florent Murat; Aili Li; Caroline Pont; Long Mao; Jérôme Salse

Reconstruction of the grass genome paleohistory revealed subgenome partitioning of microRNA (miRNA) genes during post-whole-genome duplication diploidization. The evolutionary scenario of miRNAs from the ancestral founder pool to the modern complements displayed dosage balance constrictions on the deletion/retention of miRNAs and associated target genes wherein transposable elements may play a major role in miRNA gene synteny disruption. The recent availability of plant genome sequences, combined with a robust evolutionary scenario of the modern monocot and eudicot karyotypes from their diploid ancestors, offers an opportunity to gain insights into microRNA (miRNA) gene paleohistory in plants. Characterization and comparison of miRNAs and associated protein-coding targets in plants allowed us to unravel (1) contrasted genome conservation patterns of miRNAs in monocots and eudicots after whole-genome duplication (WGD), (2) an ancestral miRNA founder pool in the monocot genomes dating back to 100 million years ago, (3) miRNA subgenome dominance during the post-WGD diploidization process with selective miRNA deletion complemented with possible transposable element–mediated return flows, and (4) the miRNA/target interaction-directed differential loss/retention of miRNAs following the gene dosage balance rule. Together, our data suggest that overretained miRNAs in grass genomes may be implicated in connected gene regulations for stress responses, which is essential for plant adaptation and useful for crop variety innovation.

Collaboration


Dive into the Caroline Pont's collaboration.

Top Co-Authors

Avatar

Jérôme Salse

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar

Florent Murat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Gilles Charmet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Abrouk

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Feuillet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Hadi Quesneville

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Ravel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Michael Alaux

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge