Catherine Feuillet
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catherine Feuillet.
Plant Biotechnology Journal | 2014
Shichen Wang; Debbie Wong; Kerrie L. Forrest; Alexandra M. Allen; Shiaoman Chao; Bevan Emma Huang; Marco Maccaferri; Silvio Salvi; Sara Giulia Milner; Luigi Cattivelli; Anna M. Mastrangelo; Alex Whan; Stuart Stephen; Gary L. A. Barker; Ralf Wieseke; Joerg Plieske; Morten Lillemo; D. E. Mather; R. Appels; Rudy Dolferus; Gina Brown-Guedira; Abraham B. Korol; Alina Akhunova; Catherine Feuillet; Jérôme Salse; Michele Morgante; Curtis J. Pozniak; Ming-Cheng Luo; Jan Dvorak; Matthew K. Morell
High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Catherine Feuillet; Silvia Travella; Nils Stein; Laurence Albar; Aurélie Nublat; Beat Keller
More than 50 leaf rust resistance (Lr) genes against the fungal pathogen Puccinia triticina have been identified in the wheat gene pool, and a large number of them have been extensively used in breeding. Of the 50 Lr genes, all are known only from their phenotype and/or map position except for Lr21, which was cloned recently. For many years, the problems of molecular work in the large (1.6 × 1010 bp), highly repetitive (80%), and hexaploid bread wheat (Triticum aestivum L.) genome have hampered map-based cloning. Here, we report the isolation of the Lr gene Lr10 from hexaploid wheat by using a combination of subgenome map-based cloning and haplotype studies in the genus Triticum. Lr10 is a single-copy gene on chromosome 1AS. It encodes a CC-NBS-LRR type of protein with an N-terminal domain, which is under diversifying selection. When overexpressed in transgenic wheat plants, Lr10 confers enhanced resistance to leaf rust. Lr10 has similarities to RPM1 in Arabidopsis thaliana and to resistance gene analogs in rice and barley, but is not closely related to other wheat Lr genes based on Southern analysis. We conclude that map-based cloning of genes of agronomic importance in hexaploid wheat is now feasible, opening perspectives for molecular bread wheat improvement trough transgenic strategies and diagnostic allele detection.
Science | 2008
Etienne Paux; Pierre Sourdille; Jérôme Salse; Cyrille Saintenac; Frédéric Choulet; Philippe Leroy; Abraham B. Korol; Monika Michalak; Shahryar F. Kianian; Wolfgang Spielmeyer; Evans S. Lagudah; Daryl J. Somers; Andrzej Kilian; Michael Alaux; Sonia Vautrin; Hélène Bergès; Kellye Eversole; R. Appels; Jan Safar; Hana Šimková; Jaroslav Dolezel; M. Bernard; Catherine Feuillet
As the staple food for 35% of the worlds population, wheat is one of the most important crop species. To date, sequence-based tools to accelerate wheat improvement are lacking. As part of the international effort to sequence the 17–billion–base-pair hexaploid bread wheat genome (2n = 6x = 42 chromosomes), we constructed a bacterial artificial chromosome (BAC)–based integrated physical map of the largest chromosome, 3B, that alone is 995 megabases. A chromosome-specific BAC library was used to assemble 82% of the chromosome into 1036 contigs that were anchored with 1443 molecular markers, providing a major resource for genetic and genomic studies. This physical map establishes a template for the remaining wheat chromosomes and demonstrates the feasibility of constructing physical maps in large, complex, polyploid genomes with a chromosome-based approach.
The Plant Cell | 2008
Jérôme Salse; Stéphanie Bolot; Michaël Throude; Vincent Jouffe; Benoît Piégu; Umar Masood Quraishi; Thomas Calcagno; Richard Cooke; Michel Delseny; Catherine Feuillet
The grass family comprises the most important cereal crops and is a good system for studying, with comparative genomics, mechanisms of evolution, speciation, and domestication. Here, we identified and characterized the evolution of shared duplications in the rice (Oryza sativa) and wheat (Triticum aestivum) genomes by comparing 42,654 rice gene sequences with 6426 mapped wheat ESTs using improved sequence alignment criteria and statistical analysis. Intraspecific comparisons identified 29 interchromosomal duplications covering 72% of the rice genome and 10 duplication blocks covering 67.5% of the wheat genome. Using the same methodology, we assessed orthologous relationships between the two genomes and detected 13 blocks of colinearity that represent 83.1 and 90.4% of the rice and wheat genomes, respectively. Integration of the intraspecific duplications data with colinearity relationships revealed seven duplicated segments conserved at orthologous positions. A detailed analysis of the length, composition, and divergence time of these duplications and comparisons with sorghum (Sorghum bicolor) and maize (Zea mays) indicated common and lineage-specific patterns of conservation between the different genomes. This allowed us to propose a model in which the grass genomes have evolved from a common ancestor with a basic number of five chromosomes through a series of whole genome and segmental duplications, chromosome fusions, and translocations.
Science | 2014
Frédéric Choulet; Adriana Alberti; Sébastien Theil; Natasha Glover; Valérie Barbe; Josquin Daron; Lise Pingault; Pierre Sourdille; Arnaud Couloux; Etienne Paux; Philippe Leroy; Sophie Mangenot; Nicolas Guilhot; Jacques Le Gouis; François Balfourier; Michael Alaux; Véronique Jamilloux; Julie Poulain; Céline Durand; Arnaud Bellec; Christine Gaspin; Jan Safar; Jaroslav Dolezel; Jane Rogers; Klaas Vandepoele; Jean-Marc Aury; Klaus F. X. Mayer; Hélène Bergès; Hadi Quesneville; Patrick Wincker
We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits.
The Plant Cell | 2010
Frédéric Choulet; Thomas Wicker; Camille Rustenholz; Etienne Paux; Jérôme Salse; Philippe Leroy; Stéphane Schlub; Marie Christine Le Paslier; Ghislaine Magdelenat; Catherine Gonthier; Arnaud Couloux; Hikmet Budak; James Breen; Michael O. Pumphrey; Sixin Liu; Xiuying Kong; Jizeng Jia; Marta Gut; Dominique Brunel; James A. Anderson; Bikram S. Gill; R. Appels; Beat Keller; Catherine Feuillet
This article describes the molecular analysis of large contiguous sequences produced from the bread wheat genome. It provides novel insights into the number, distribution, and density of genes along chromosome 3B and reveals an unexpectedly high amount of noncollinear genes compared to model grass genomes. To improve our understanding of the organization and evolution of the wheat (Triticum aestivum) genome, we sequenced and annotated 13-Mb contigs (18.2 Mb) originating from different regions of its largest chromosome, 3B (1 Gb), and produced a 2x chromosome survey by shotgun Illumina/Solexa sequencing. All regions carried genes irrespective of their chromosomal location. However, gene distribution was not random, with 75% of them clustered into small islands containing three genes on average. A twofold increase of gene density was observed toward the telomeres likely due to high tandem and interchromosomal duplication events. A total of 3222 transposable elements were identified, including 800 new families. Most of them are complete but showed a highly nested structure spread over distances as large as 200 kb. A succession of amplification waves involving different transposable element families led to contrasted sequence compositions between the proximal and distal regions. Finally, with an estimate of 50,000 genes per diploid genome, our data suggest that wheat may have a higher gene number than other cereals. Indeed, comparisons with rice (Oryza sativa) and Brachypodium revealed that a high number of additional noncollinear genes are interspersed within a highly conserved ancestral grass gene backbone, supporting the idea of an accelerated evolution in the Triticeae lineages.
Nature | 2013
Susan R. McCouch; Gregory J. Baute; James Bradeen; Paula J. Bramel; Edward S. Buckler; John M. Burke; David Charest; Sylvie Cloutier; Glenn Cole; Hannes Dempewolf; Michael Dingkuhn; Catherine Feuillet; Paul Gepts; Dario Grattapaglia; Luigi Guarino; Scott A. Jackson; Sandra Knapp; Peter Langridge; Amy Lawton-Rauh; Qui Lijua; Charlotte Lusty; Todd P. Michael; Sean Myles; Ken Naito; Randall L. Nelson; Reno Pontarollo; Christopher M. Richards; Loren H. Rieseberg; Jeffrey Ross-Ibarra; Steve Rounsley
Humanity depends on fewer than a dozen of the approximately 300,000 species of flowering plants for 80% of its caloric intake. And we capitalize on only a fraction of the genetic diversity that resides within each of these species. This is not enough to support our food system in the future. Food availability must double in the next 25 years to keep pace with population and income growth around the world. Already, food-production systems are precarious in the face of intensifying demand, climate change, soil degradation and water and land shortages. Farmers have saved the seeds of hundreds of crop species and hundreds of thousands of ‘primitive’ varieties (local domesticates called landraces), as well as the wild relatives of crop species and modern varieties no longer in use. These are stored in more than 1,700 gene banks worldwide. Maintaining the 11 international gene-bank collections alone costs about US
Trends in Plant Science | 2011
Catherine Feuillet; Jan E. Leach; Jane Rogers; Kellye Eversole
18 million a year.
Trends in Plant Science | 2000
Beat Keller; Catherine Feuillet
2010 marks the 10th anniversary of the completion of the first plant genome sequence (Arabidopsis thaliana). Triggered by advancements in sequencing technologies, many crop genome sequences have been produced, with eight published since 2008. To date, however, only the rice (Oryza sativa) genome sequence has been finished to a quality level similar to that of the Arabidopsis sequence. This trend to produce draft genomes could affect the ability of researchers to address biological questions of speciation and recent evolution or to link sequence variation accurately to phenotypes. Here, we review the current crop genome sequencing activities, discuss how variability in sequence quality impacts utility for different studies and provide a perspective for a paradigm shift in selecting crops for sequencing in the future.
PLOS ONE | 2011
Timothée Flutre; Elodie Duprat; Catherine Feuillet; Hadi Quesneville
Grasses are the single most important plant family in agriculture. In the past years, comparative genetic mapping has revealed conserved gene order (colinearity) among many grass species. Recently, the first studies at gene level have demonstrated that microcolinearity of genes is less conserved: small scale rearrangements and deletions complicate the microcolinearity between closely related species, such as sorghum and maize, but also between rice and other crop plants. In spite of these problems, rice remains the model plant for grasses as there is limited useful colinearity between Arabidopsis and grasses. However, studies in rice have to be complemented by more intensive genetic work on grass species with large genomes (maize, Triticeae). Gene-rich chromosomal regions in species with large genomes, such as wheat, have a high gene density and are ideal targets for partial genome sequencing.