Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jérôme Salse is active.

Publication


Featured researches published by Jérôme Salse.


Nature Genetics | 2011

The genome of Theobroma cacao

Xavier Argout; Jérôme Salse; Jean-Marc Aury; Mark J. Guiltinan; Gaëtan Droc; Jérôme Gouzy; Mathilde Allègre; Cristian Chaparro; Thierry Legavre; Siela N. Maximova; Michael Abrouk; Florent Murat; Olivier Fouet; Julie Poulain; Manuel Ruiz; Yolande Roguet; Maguy Rodier-Goud; Jose Fernandes Barbosa-Neto; François Sabot; Dave Kudrna; Jetty S. S. Ammiraju; Stephan C. Schuster; John E. Carlson; Erika Sallet; Thomas Schiex; Anne Dievart; Melissa Kramer; Laura Gelley; Zi Shi; Aurélie Bérard

We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.


The Plant Cell | 2011

Unlocking the Barley Genome by Chromosomal and Comparative Genomics

Klaus F. X. Mayer; Mihaela Martis; Peter E. Hedley; Hana Šimková; Hui Liu; Jenny Morris; Burkhard Steuernagel; Stephan Roessner; Heidrun Gundlach; Marie Kubaláková; Pavla Suchánková; Florent Murat; Marius Felder; Thomas Nussbaumer; Andreas Graner; Jérôme Salse; Takashi R. Endo; Hiroaki Sakai; Tsuyoshi Tanaka; Takeshi Itoh; Kazuhiro Sato; Matthias Platzer; Takashi Matsumoto; Uwe Scholz; Jaroslav Doležel; Robbie Waugh; Nils Stein

Survey sequence and array hybridization data from flow-sorted barley chromosomes were integrated using a comparative genomics model to define an ordered gene map of the barley genome that contains approximately two-thirds of its estimated 32000 genes. The resulting high-resolution framework facilitated a genome-wide structural analysis of the barley genome and a detailed comparative analysis with wheat. We used a novel approach that incorporated chromosome sorting, next-generation sequencing, array hybridization, and systematic exploitation of conserved synteny with model grasses to assign ~86% of the estimated ~32,000 barley (Hordeum vulgare) genes to individual chromosome arms. Using a series of bioinformatically constructed genome zippers that integrate gene indices of rice (Oryza sativa), sorghum (Sorghum bicolor), and Brachypodium distachyon in a conserved synteny model, we were able to assemble 21,766 barley genes in a putative linear order. We show that the barley (H) genome displays a mosaic of structural similarity to hexaploid bread wheat (Triticum aestivum) A, B, and D subgenomes and that orthologous genes in different grasses exhibit signatures of positive selection in different lineages. We present an ordered, information-rich scaffold of the barley genome that provides a valuable and robust framework for the development of novel strategies in cereal breeding.


Science | 2008

A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B

Etienne Paux; Pierre Sourdille; Jérôme Salse; Cyrille Saintenac; Frédéric Choulet; Philippe Leroy; Abraham B. Korol; Monika Michalak; Shahryar F. Kianian; Wolfgang Spielmeyer; Evans S. Lagudah; Daryl J. Somers; Andrzej Kilian; Michael Alaux; Sonia Vautrin; Hélène Bergès; Kellye Eversole; R. Appels; Jan Safar; Hana Šimková; Jaroslav Dolezel; M. Bernard; Catherine Feuillet

As the staple food for 35% of the worlds population, wheat is one of the most important crop species. To date, sequence-based tools to accelerate wheat improvement are lacking. As part of the international effort to sequence the 17–billion–base-pair hexaploid bread wheat genome (2n = 6x = 42 chromosomes), we constructed a bacterial artificial chromosome (BAC)–based integrated physical map of the largest chromosome, 3B, that alone is 995 megabases. A chromosome-specific BAC library was used to assemble 82% of the chromosome into 1036 contigs that were anchored with 1443 molecular markers, providing a major resource for genetic and genomic studies. This physical map establishes a template for the remaining wheat chromosomes and demonstrates the feasibility of constructing physical maps in large, complex, polyploid genomes with a chromosome-based approach.


The Plant Cell | 2005

Molecular Basis of Evolutionary Events That Shaped the Hardness Locus in Diploid and Polyploid Wheat Species (Triticum and Aegilops)

Nathalie Chantret; Jérôme Salse; François Sabot; Sadequr Rahman; Arnaud Bellec; Bastien Laubin; Ivan Dubois; Carole Dossat; Pierre Sourdille; Philippe Joudrier; Marie-Françoise Gautier; Laurence Cattolico; Michel Beckert; Sébastien Aubourg; Jean Weissenbach; Michel Caboche; M. Bernard; Philippe Leroy; Boulos Chalhoub

The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.e., the A, B, or D genomes) were compared between species of different ploidy levels. The comparative analysis allowed us to determine the extent and sequences of the rearranged regions as well as rearrangement breakpoints and sequence motifs at their boundaries, which suggest rearrangement by illegitimate recombination. Among these genomic rearrangements, the previously reported Pina and Pinb genes loss from the Ha locus of polyploid wheat species was caused by a large genomic deletion that probably occurred independently in the A and B genomes. Moreover, the Ha locus in the D genome of hexaploid wheat (T. aestivum) is 29 kb smaller than in the D genome of its diploid progenitor Ae. tauschii, principally because of transposable element insertions and two large deletions caused by illegitimate recombination. Our data suggest that illegitimate DNA recombination, leading to various genomic rearrangements, constitutes one of the major evolutionary mechanisms in wheat species.


Nature | 2014

The genome of Eucalyptus grandis

Alexander Andrew Myburg; Dario Grattapaglia; Gerald A. Tuskan; Uffe Hellsten; Richard D. Hayes; Jane Grimwood; Jerry Jenkins; Erika Lindquist; Hope Tice; Diane Bauer; David Goodstein; Inna Dubchak; Alexandre Poliakov; Eshchar Mizrachi; Anand Raj Kumar Kullan; Steven G. Hussey; Desre Pinard; Karen Van der Merwe; Pooja Singh; Ida Van Jaarsveld; Orzenil Bonfim Silva-Junior; Roberto C. Togawa; Marilia R. Pappas; Danielle A. Faria; Carolina Sansaloni; Cesar D. Petroli; Xiaohan Yang; Priya Ranjan; Timothy J. Tschaplinski; Chu-Yu Ye

Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


Nature Genetics | 2013

The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions

Shaogui Guo; Jianguo Zhang; Honghe Sun; Jérôme Salse; William J. Lucas; Haiying Zhang; Yi Zheng; Linyong Mao; Yi Ren; Zhiwen Wang; Jiumeng Min; Xiaosen Guo; Florent Murat; Byung-Kook Ham; Zhaoliang Zhang; Shan Gao; Mingyun Huang; Yimin Xu; Silin Zhong; Aureliano Bombarely; Lukas A. Mueller; Hong Zhao; Hongju He; Zhang Y; Zhonghua Zhang; Sanwen Huang; Tao Tan; Erli Pang; Kui Lin; Qun Hu

Watermelon, Citrullus lanatus, is an important cucurbit crop grown throughout the world. Here we report a high-quality draft genome sequence of the east Asia watermelon cultivar 97103 (2n = 2× = 22) containing 23,440 predicted protein-coding genes. Comparative genomics analysis provided an evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-chromosome paleohexaploid eudicot ancestor. Resequencing of 20 watermelon accessions representing three different C. lanatus subspecies produced numerous haplotypes and identified the extent of genetic diversity and population structure of watermelon germplasm. Genomic regions that were preferentially selected during domestication were identified. Many disease-resistance genes were also found to be lost during domestication. In addition, integrative genomic and transcriptomic analyses yielded important insights into aspects of phloem-based vascular signaling in common between watermelon and cucumber and identified genes crucial to valuable fruit-quality traits, including sugar accumulation and citrulline metabolism.


The Plant Cell | 2010

Megabase Level Sequencing Reveals Contrasted Organization and Evolution Patterns of the Wheat Gene and Transposable Element Spaces

Frédéric Choulet; Thomas Wicker; Camille Rustenholz; Etienne Paux; Jérôme Salse; Philippe Leroy; Stéphane Schlub; Marie Christine Le Paslier; Ghislaine Magdelenat; Catherine Gonthier; Arnaud Couloux; Hikmet Budak; James Breen; Michael O. Pumphrey; Sixin Liu; Xiuying Kong; Jizeng Jia; Marta Gut; Dominique Brunel; James A. Anderson; Bikram S. Gill; R. Appels; Beat Keller; Catherine Feuillet

This article describes the molecular analysis of large contiguous sequences produced from the bread wheat genome. It provides novel insights into the number, distribution, and density of genes along chromosome 3B and reveals an unexpectedly high amount of noncollinear genes compared to model grass genomes. To improve our understanding of the organization and evolution of the wheat (Triticum aestivum) genome, we sequenced and annotated 13-Mb contigs (18.2 Mb) originating from different regions of its largest chromosome, 3B (1 Gb), and produced a 2x chromosome survey by shotgun Illumina/Solexa sequencing. All regions carried genes irrespective of their chromosomal location. However, gene distribution was not random, with 75% of them clustered into small islands containing three genes on average. A twofold increase of gene density was observed toward the telomeres likely due to high tandem and interchromosomal duplication events. A total of 3222 transposable elements were identified, including 800 new families. Most of them are complete but showed a highly nested structure spread over distances as large as 200 kb. A succession of amplification waves involving different transposable element families led to contrasted sequence compositions between the proximal and distal regions. Finally, with an estimate of 50,000 genes per diploid genome, our data suggest that wheat may have a higher gene number than other cereals. Indeed, comparisons with rice (Oryza sativa) and Brachypodium revealed that a high number of additional noncollinear genes are interspersed within a highly conserved ancestral grass gene backbone, supporting the idea of an accelerated evolution in the Triticeae lineages.


Genome Research | 2010

Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution

Florent Murat; Jian-Hong Xu; Eric Tannier; Michael Abrouk; Nicolas Guilhot; Caroline Pont; Joachim Messing; Jérôme Salse

The comparison of the chromosome numbers of todays species with common reconstructed paleo-ancestors has led to intense speculation of how chromosomes have been rearranged over time in mammals. However, similar studies in plants with respect to genome evolution as well as molecular mechanisms leading to mosaic synteny blocks have been lacking due to relevant examples of evolutionary zooms from genomic sequences. Such studies require genomes of species that belong to the same family but are diverged to fall into different subfamilies. Our most important crops belong to the family of the grasses, where a number of genomes have now been sequenced. Based on detailed paleogenomics, using inference from n = 5-12 grass ancestral karyotypes (AGKs) in terms of gene content and order, we delineated sequence intervals comprising a complete set of junction break points of orthologous regions from rice, maize, sorghum, and Brachypodium genomes, representing three different subfamilies and different polyploidization events. By focusing on these sequence intervals, we could show that the chromosome number variation/reduction from the n = 12 common paleo-ancestor was driven by nonrandom centric double-strand break repair events. It appeared that the centromeric/telomeric illegitimate recombination between nonhomologous chromosomes led to nested chromosome fusions (NCFs) and synteny break points (SBPs). When intervals comprising NCFs were compared in their structure, we concluded that SBPs (1) were meiotic recombination hotspots, (2) corresponded to high sequence turnover loci through repeat invasion, and (3) might be considered as hotspots of evolutionary novelty that could act as a reservoir for producing adaptive phenotypes.


Trends in Plant Science | 2010

Palaeogenomics of plants: synteny-based modelling of extinct ancestors

Michael Abrouk; Florent Murat; Caroline Pont; Joachim Messing; Scott A. Jackson; Thomas Faraut; Eric Tannier; Christophe Plomion; Richard Cooke; Catherine Feuillet; Jérôme Salse

In the past ten years, international initiatives have led to the development of large sets of genomic resources that allow comparative genomic studies between plant genomes at a high level of resolution. Comparison of map-based genomic sequences revealed shared intra-genomic duplications, providing new insights into the evolution of flowering plant genomes from common ancestors. Plant genomes can be presented as concentric circles, providing a new reference for plant chromosome evolutionary relationships and an efficient tool for gene annotation and cross-genome markers development. Recent palaeogenomic data demonstrate that whole-genome duplications have provided a motor for the evolutionary success of flowering plants over the last 50-70 million years.


G3: Genes, Genomes, Genetics | 2011

Translational Genomics in Legumes Allowed Placing In Silico 5460 Unigenes on the Pea Functional Map and Identified Candidate Genes in Pisum sativum L.

Amandine Bordat; Vincent Savois; Marie Georgette Nicolas; Jérôme Salse; Aurélie Chauveau; Michael Bourgeois; Jean Potier; Hervé Houtin; Céline Rond; Florent Murat; Pascal Marget; Grégoire Aubert; Judith Burstin

To identify genes involved in phenotypic traits, translational genomics from highly characterized model plants to poorly characterized crop plants provides a valuable source of markers to saturate a zone of interest as well as functionally characterized candidate genes. In this paper, an integrated view of the pea genetic map was developed. A series of gene markers were mapped and their best reciprocal homologs were identified on M. truncatula, L. japonicus, soybean, and poplar pseudomolecules. Based on the syntenic relationships uncovered between pea and M. truncatula, 5460 pea Unigenes were tentatively placed on the consensus map. A new bioinformatics tool, http://www.thelegumeportal.net/pea_mtr_translational_toolkit, was developed that allows, for any gene sequence, to search its putative position on the pea consensus map and hence to search for candidate genes among neighboring Unigenes. As an example, a promising candidate gene for the hypernodulation mutation nod3 in pea was proposed based on the map position of the likely homolog of Pub1, a M. truncatula gene involved in nodulation regulation. A broader view of pea genome evolution was obtained by revealing syntenic relationships between pea and sequenced genomes. Blocks of synteny were identified which gave new insights into the evolution of chromosome structure in Papillionoids and Eudicots. The power of the translational genomics approach was underlined.

Collaboration


Dive into the Jérôme Salse's collaboration.

Top Co-Authors

Avatar

Florent Murat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Caroline Pont

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Feuillet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Hadi Quesneville

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Michael Abrouk

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Arnaud Couloux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christophe Plomion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Hélène Bergès

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Alaux

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge