Caroline Van Cauwenbergh
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caroline Van Cauwenbergh.
Plant Journal | 2012
Stijn Dhondt; Dirk Van Haerenborgh; Caroline Van Cauwenbergh; Roeland M. H. Merks; Wilfried Philips; Gerrit T.S. Beemster; Dirk Inzé
The study of transgenic Arabidopsis lines with altered vascular patterns has revealed key players in the venation process, but details of the vascularization process are still unclear, partly because most lines have only been assessed qualitatively. Therefore, quantitative analyses are required to identify subtle perturbations in the pattern and to test dynamic modeling hypotheses using biological measurements. We developed an online framework, designated Leaf Image Analysis Interface (LIMANI), in which venation patterns are automatically segmented and measured on dark-field images. Image segmentation may be manually corrected through use of an interactive interface, allowing supervision and rectification steps in the automated image analysis pipeline and ensuring high-fidelity analysis. This online approach is advantageous for the user in terms of installation, software updates, computer load and data storage. The framework was used to study vascular differentiation during leaf development and to analyze the venation pattern in transgenic lines with contrasting cellular and leaf size traits. The results show the evolution of vascular traits during leaf development, suggest a self-organizing mechanism for leaf venation patterning, and reveal a tight balance between the number of end-points and branching points within the leaf vascular network that does not depend on the leaf developmental stage and cellular content, but on the leaf position on the rosette. These findings indicate that development of LIMANI improves understanding of the interaction between vascular patterning and leaf growth.
Genetics in Medicine | 2012
Frauke Coppieters; Bram De Wilde; Steve Lefever; Ellen De Meester; Nina De Rocker; Caroline Van Cauwenbergh; Filip Pattyn; Françoise Meire; Bart P. Leroy; Jan Hellemans; Jo Vandesompele; Elfride De Baere
Purpose:Leber congenital amaurosis (LCA) is a rare congenital retinal dystrophy associated with 16 genes. Recent breakthroughs in LCA gene therapy offer the first prospect of treating inherited blindness, which requires an unequivocal and early molecular diagnosis. While present genetic tests do not address this due to a tremendous genetic heterogeneity, massively parallel sequencing (MPS) strategies might bring a solution. Here, we developed a comprehensive molecular test for LCA based on targeted MPS of all exons of 16 known LCA genes.Methods:We designed a unique and flexible workflow for targeted resequencing of all 236 exons from 16 LCA genes based on quantitative PCR (qPCR) amplicon ligation, shearing, and parallel sequencing of multiple patients on a single lane of a short-read sequencer. Twenty-two prescreened LCA patients were included, five of whom had a known molecular cause.Results:Validation of 107 variations was performed as proof of concept. In addition, the causal genetic defect and a single heterozygous mutation were identified in 3 and 5, respectively, of 17 patients without previously identified mutations.Conclusion:We propose a novel targeted MPS-based approach that is suitable for accurate, fast, and cost-effective early molecular testing in LCA, and easily applicable in other genetic disorders.Genet Med 2012:14(6):576–585
Genetics in Medicine | 2017
Caroline Van Cauwenbergh; Kristof Van Schil; Robrecht Cannoodt; Miriam Bauwens; Thalia Van Laethem; Sarah De Jaegere; Wouter Steyaert; Tom Sante; Björn Menten; Bart P. Leroy; Frauke Coppieters; Elfride De Baere
Purpose:Our goal was to design a customized microarray, arrEYE, for high-resolution copy number variant (CNV) analysis of known and candidate genes for inherited retinal dystrophy (iRD) and retina-expressed noncoding RNAs (ncRNAs).Methods:arrEYE contains probes for the full genomic region of 106 known iRD genes, including those implicated in retinitis pigmentosa (RP) (the most frequent iRD), cone–rod dystrophies, macular dystrophies, and an additional 60 candidate iRD genes and 196 ncRNAs. Eight CNVs in iRD genes identified by other techniques were used as positive controls. The test cohort consisted of 57 patients with autosomal dominant, X-linked, or simplex RP.Results:In an RP patient, a novel heterozygous deletion of exons 7 and 8 of the HGSNAT gene was identified: c.634-408_820+338delinsAGAATATG, p.(Glu212Glyfs*2). A known variant was found on the second allele: c.1843G>A, p.(Ala615Thr). Furthermore, we expanded the allelic spectrum of USH2A and RCBTB1 with novel CNVs.Conclusion:The arrEYE platform revealed subtle single-exon to larger CNVs in iRD genes that could be characterized at the nucleotide level, facilitated by the high resolution of the platform. We report the first CNV in HGSNAT that, combined with another mutation, leads to RP, further supporting its recently identified role in nonsyndromic iRD.Genet Med 19 4, 457–466.
PLOS ONE | 2017
Caroline Van Cauwenbergh; Frauke Coppieters; Dimitri Roels; Sarah De Jaegere; Helena Flipts; Julie De Zaeytijd; Sophie Walraedt; Charlotte Claes; Erik Fransen; Guy Van Camp; Fanny Depasse; Ingele Casteels; Thomy de Ravel; Bart P. Leroy; Elfride De Baere
Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular spectrum of PRPH2, PRPF8, RHO, RP1, SNRNP200, and TOPORS-associated adRP by the identification of 17 novel mutations.
Human Mutation | 2015
Frauke Coppieters; Anne Laure Todeschini; Takuro Fujimaki; Annelot Baert; Marieke De Bruyne; Caroline Van Cauwenbergh; Hannah Verdin; Miriam Bauwens; Maté Ongenaert; Mineo Kondo; Françoise Meire; Akira Murakami; Reiner A. Veitia; Bart P. Leroy; Elfride De Baere
Leber congenital amaurosis (LCA) is a severe autosomal‐recessive retinal dystrophy leading to congenital blindness. A recently identified LCA gene is NMNAT1, located in the LCA9 locus. Although most mutations in blindness genes are coding variations, there is accumulating evidence for hidden noncoding defects or structural variations (SVs). The starting point of this study was an LCA9‐associated consanguineous family in which no coding mutations were found in the LCA9 region. Exploring the untranslated regions of NMNAT1 revealed a novel homozygous 5′UTR variant, c.‐70A>T. Moreover, an adjacent 5′UTR variant, c.‐69C>T, was identified in a second consanguineous family displaying a similar phenotype. Both 5′UTR variants resulted in decreased NMNAT1 mRNA abundance in patients’ lymphocytes, and caused decreased luciferase activity in human retinal pigment epithelial RPE‐1 cells. Second, we unraveled pseudohomozygosity of a coding NMNAT1 mutation in two unrelated LCA patients by the identification of two distinct heterozygous partial NMNAT1 deletions. Molecular characterization of the breakpoint junctions revealed a complex Alu‐rich genomic architecture. Our study uncovered hidden genetic variation in NMNAT1‐associated LCA and emphasized a shift from coding to noncoding regulatory mutations and repeat‐mediated SVs in the molecular pathogenesis of heterogeneous recessive disorders such as hereditary blindness.
Investigative Ophthalmology & Visual Science | 2015
B Almoallem; Miriam Bauwens; Sophie Walraedt; Patricia Delbeke; Julie De Zaeytijd; Philippe Kestelyn; Françoise Meire; Sandra Janssens; Caroline Van Cauwenbergh; Hannah Verdin; Sally Hooghe; Prasoon Kumar Thakur; Frauke Coppieters; Kim De Leeneer; Koenraad Devriendt; Bart P. Leroy; Elfride De Baere
PURPOSE Idiopathic infantile nystagmus (IIN; OMIM 31700) with X-linked inheritance is one of the most common forms of infantile nystagmus. Up to date, three X-linked loci have been identified, Xp11.4-p11.3 (calcium/calmodulin-dependent serine protein kinase [CASK]), Xp22 (GPR143), and Xq26-q27 (FRMD7), respectively. Here, we investigated the role of mutations and copy number variations (CNV) of FRMD7 and GPR143 in the molecular pathogenesis of IIN in 49 unrelated Belgian probands. METHODS We set up a comprehensive molecular genetic workflow based on Sanger sequencing, targeted next generation sequencing (NGS) and CNV analysis using multiplex ligation-dependent probe amplification (MLPA) for FRMD7 (NM_194277.2) and GPR143 (NM_000273.2). RESULTS In 11/49 probands, nine unique FRMD7 changes were found, five of which are novel: frameshift mutation c.2036del, missense mutations c.801C>A and c.875T>C, splice-site mutation c.497+5G>A, and one genomic rearrangement (1.29 Mb deletion) in a syndromic case. Additionally, four known mutations were found: c.70G>A, c.886G>C, c.910C>T, and c.660del. The latter was found in three independent families. In silico predictions and segregation testing of the novel mutations support their pathogenic effect. No GPR143 mutations or CNVs were found in the remainder of the probands (38/49). CONCLUSIONS Overall, genetic defects of FRMD7 were found in 11/49 (22.4%) probands, including the first reported genomic rearrangement of FRMD7 in IIN, expanding its mutational spectrum. Finally, we generate a discovery cohort of IIN patients potentially harboring either hidden a variation of FRMD7 or mutations in genes at known or novel loci sustaining the genetic heterogeneity of IIN.
Human Mutation | 2017
Anja Kathrin Mayer; Caroline Van Cauwenbergh; Christine Rother; Britta Baumann; Peggy Reuter; Elfride De Baere; Bernd Wissinger; Susanne Kohl
Achromatopsia is a rare autosomal recessive cone disorder characterized by color vision defects, photophobia, nystagmus, and severely reduced visual acuity. The disease is caused by mutations in genes encoding crucial components of the cone phototransduction cascade (CNGA3, CNGB3, GNAT2, PDE6C, and PDE6H) or in ATF6, involved in the unfolded protein response. CNGB3 encoding the beta subunit of the cyclic nucleotide‐gated ion channel in cone photoreceptors is the major achromatopsia gene. Here, we present a comprehensive spectrum of CNGB3 mutations and their prevalence in a cohort of 1074 independent families clinically diagnosed with achromatopsia. Of these, 485 (45.2%) carried mutations in CNGB3. We identified a total of 98 different potentially disease‐causing CNGB3 variants, 58 of which are novel. About 10% of patients with CNGB3 mutations only harbored a single heterozygous variant. Therefore, we performed quantitative real‐time PCR in 43 of such single heterozygotes in search of the missing allele, followed by microarray‐based comparative genomic hybridization and breakpoint mapping. We discovered nine different heterozygous copy number variations encompassing one to 10 consecutive exons in 16 unrelated patients. Moreover, one additional patient with a homozygous CNGB3 deletion encompassing exons 4−18 was identified, highlighting the importance of CNV analysis for this gene.
Investigative Ophthalmology & Visual Science | 2018
Dyon Valkenburg; Caroline Van Cauwenbergh; Birgit Lorenz; Mies M. van Genderen; Mette Bertelsen; Jan-Willem R. Pott; Frauke Coppieters; Julie De Zaeytijd; Alberta A.H.J. Thiadens; Caroline C. W. Klaver; Hester Y. Kroes; Mary J. van Schooneveld; Markus N. Preising; Carel B. Hoyng; Bart P. Leroy; L. Ingeborgh van den Born; Rob W.J. Collin
Purpose To describe the phenotypic spectrum of retinal disease caused by the c.2991+1655A>G mutation in CEP290 and to compare disease severity between homozygous and compound heterozygous patients. Methods Medical records were reviewed for best-corrected visual acuity (BCVA), age of onset, fundoscopy descriptions. Foveal outer nuclear layer (ONL) and ellipsoid zone (EZ) presence was assessed using spectral-domain optical coherence tomography (SD-OCT). Differences between compound heterozygous and homozygous patients were analyzed based on visual performance and visual development. Results A total of 66 patients were included. The majority of patients had either light perception or no light perception. In the remaining group of 14 patients, median BCVA was 20/195 Snellen (0.99 LogMAR; range 0.12-1.90) for the right eye, and 20/148 Snellen (0.87 LogMAR; range 0.22-1.90) for the left. Homozygous patients tended to be more likely to develop light perception compared to more severely affected compound heterozygous patients (P = 0.080) and are more likely to improve from no light perception to light perception (P = 0.022) before the age of 6 years. OCT data were available in 12 patients, 11 of whom had retained foveal ONL and EZ integrity up to 48 years (median 23 years) of age. Conclusions Homozygous patients seem less severely affected compared to their compound-heterozygous peers. Improvement of visual function may occur in the early years of life, suggesting a time window for therapeutic intervention up to the approximate age of 17 years. This period may be extended by an intact foveal ONL and EZ on OCT.
Investigative Ophthalmology & Visual Science | 2018
Mays Talib; Mary J. van Schooneveld; Caroline Van Cauwenbergh; Jan Wijnholds; Jacoline B. ten Brink; Ralph J. Florijn; Nicoline E. Schalij-Delfos; Gislin Dagnelie; Maria M. van Genderen; Elfride De Baere; Magda A. Meester-Smoor; Julie De Zaeytijd; Frans P.M. Cremers; L. Ingeborgh van den Born; Alberta A.H.J. Thiadens; Carel B. Hoyng; Caroline C. W. Klaver; Bart P. Leroy; Arthur A. B. Bergen; Camiel J. F. Boon
Purpose The purpose of this study was to investigate the phenotype and long-term clinical course of female carriers of RPGR mutations. Methods This was a retrospective cohort study of 125 heterozygous RPGR mutation carriers from 49 families. Results Eighty-three heterozygotes were from retinitis pigmentosa (RP) pedigrees, 37 were from cone-/cone-rod dystrophy (COD/CORD) pedigrees, and 5 heterozygotes were from pedigrees with mixed RP/CORD or unknown diagnosis. Mutations were located in exon 1-14 and in ORF15 in 42 of 125 (34%) and 83 of 125 (66%) subjects, respectively. The mean age at the first examination was 34.4 years (range, 2.1 to 86.0 years). The median follow-up time in heterozygotes with longitudinal data (n = 62) was 12.2 years (range, 1.1 to 52.2 years). Retinal pigmentary changes were present in 73 (58%) individuals. Visual symptoms were reported in 51 (40%) cases. Subjects with both symptoms and pigmentary fundus changes were older than the other heterozygotes (P = 0.01) and had thinner foveal outer retinas (P = 0.006). Complete expression of the RP or CORD phenotype was observed in 29 (23%) heterozygotes, although usually in milder forms than in affected male relatives. Best-corrected visual acuity (BCVA) was <20/40 and <20/400 in at least one eye in 45 of 116 (39%) and 11 of 116 (9%) heterozygotes, respectively. Myopia was observed in 74 of 101 (73%) subjects and was associated with lower BCVA (P = 0.006). Increasing age was associated with lower BCVA (P = 0.002) and decreasing visual field size (P = 0.012; I4e isopter). Conclusions RPGR mutations lead to a phenotypic spectrum in female carriers, with myopia as a significantly aggravating factor. Complete disease expression is observed in some individuals, who may benefit from future (gene) therapeutic options.
European Human Genetics conference 2018 (ESHG 2018) | 2018
Stijn Van De Sompele; Kristof Van Schil; Caroline Van Cauwenbergh; Toon Rosseel; Sarah De Jaegere; Thalia Van Laethem; Irina Balikova; Bart P. Leroy; Frauke Coppieters; Elfride De Baere