Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frauke Coppieters is active.

Publication


Featured researches published by Frauke Coppieters.


The Lancet | 2009

Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial

Albert M. Maguire; Katherine A. High; Alberto Auricchio; J. Fraser Wright; Eric A. Pierce; Francesco Testa; Federico Mingozzi; Jeannette L. Bennicelli; Gui-shuang Ying; Settimio Rossi; Ann Fulton; Kathleen Marshall; Sandro Banfi; Daniel C. Chung; Jessica I. W. Morgan; Bernd Hauck; Olga Zelenaia; Xiaosong Zhu; Leslie Raffini; Frauke Coppieters; Elfride De Baere; Kenneth S. Shindler; Nicholas J. Volpe; Enrico Maria Surace; Carmela Acerra; Arkady Lyubarsky; T. Michael Redmond; Edwin M. Stone; Junwei Sun; Jenni Fer Uvellman Mcdonnell

BACKGROUND Gene therapy has the potential to reverse disease or prevent further deterioration of vision in patients with incurable inherited retinal degeneration. We therefore did a phase 1 trial to assess the effect of gene therapy on retinal and visual function in children and adults with Lebers congenital amaurosis. METHODS We assessed the retinal and visual function in 12 patients (aged 8-44 years) with RPE65-associated Lebers congenital amaurosis given one subretinal injection of adeno-associated virus (AAV) containing a gene encoding a protein needed for the isomerohydrolase activity of the retinal pigment epithelium (AAV2-hRPE65v2) in the worst eye at low (1.5 x 10(10) vector genomes), medium (4.8 x 10(10) vector genomes), or high dose (1.5 x 10(11) vector genomes) for up to 2 years. FINDINGS AAV2-hRPE65v2 was well tolerated and all patients showed sustained improvement in subjective and objective measurements of vision (ie, dark adaptometry, pupillometry, electroretinography, nystagmus, and ambulatory behaviour). Patients had at least a 2 log unit increase in pupillary light responses, and an 8-year-old child had nearly the same level of light sensitivity as that in age-matched normal-sighted individuals. The greatest improvement was noted in children, all of whom gained ambulatory vision. The study is registered with ClinicalTrials.gov, number NCT00516477. INTERPRETATION The safety, extent, and stability of improvement in vision in all patients support the use of AAV-mediated gene therapy for treatment of inherited retinal diseases, with early intervention resulting in the best potential gain. FUNDING Center for Cellular and Molecular Therapeutics at the Childrens Hospital of Philadelphia, Foundation Fighting Blindness, Telethon, Research to Prevent Blindness, F M Kirby Foundation, Mackall Foundation Trust, Regione Campania Convenzione, European Union, Associazione Italiana Amaurosi Congenita di Leber, Fund for Scientific Research, Fund for Research in Ophthalmology, and National Center for Research Resources.


Human Mutation | 2010

CEP290, a gene with many faces: mutation overview and presentation of CEP290base.

Frauke Coppieters; Steve Lefever; Bart P. Leroy; Elfride De Baere

Ciliopathies are an emerging group of disorders, caused by mutations in ciliary genes. One of the most intriguing disease genes associated with ciliopathies is CEP290, in which mutations cause a wide variety of distinct phenotypes, ranging from isolated blindness over Senior‐Loken syndrome (SLS), nephronophthisis (NPHP), Joubert syndrome (related disorders) (JS[RD]), Bardet‐Biedl syndrome (BBS), to the lethal Meckel‐Grüber syndrome (MKS). Despite the identification of over 100 unique CEP290 mutations, no clear genotype–phenotype correlations could yet be established, and consequently the predictive power of a CEP290‐related genotype remains limited. One of the challenges is a better understanding of second‐site modifiers. In this respect, there is a growing interest in the potential modifying effects of variations in genes encoding other members of the ciliary proteome that interact with CEP290. Here, we provide an overview of all CEP290 mutations identified so far, with their associated phenotypes. To this end, we developed CEP290base, a locus‐specific mutation database that links mutations with patients and their phenotypes (medgen.ugent.be/cep290base). Hum Mutat 31:1097–1108, 2010.


Investigative Ophthalmology & Visual Science | 2011

IQCB1 Mutations in Patients with Leber Congenital Amaurosis

Alejandro Estrada-Cuzcano; Robert K. Koenekoop; Frauke Coppieters; Susanne Kohl; Irma Lopez; Rob W.J. Collin; Elfride De Baere; Debbie D. Roeleveld; Jonah J. Marek; Antje Bernd; Klaus Rohrschneider; L. Ingeborgh van den Born; Françoise Meire; Irene H. Maumenee; Samuel G. Jacobson; Carel B. Hoyng; Eberhart Zrenner; Frans P.M. Cremers; Anneke I. den Hollander

PURPOSE Leber congenital amaurosis (LCA) is genetically heterogeneous, with 15 genes identified thus far, accounting for ∼70% of LCA patients. The aim of the present study was to identify new genetic causes of LCA. METHODS Homozygosity mapping in >150 LCA patients of worldwide origin was performed with high-density SNP microarrays to identify new disease-causing genes. RESULTS In three isolated LCA patients, the authors identified large homozygous regions on chromosome 3 encompassing the IQCB1 gene, which has been associated with Senior-Loken syndrome (SLSN), characterized by nephronophthisis and retinal degeneration. Mutation analysis of IQCB1 in these three patients and a subsequent cohort of 222 additional LCA patients identified frameshift and nonsense mutations in 11 patients diagnosed with LCA. On re-inspection of the patients disease status, seven were found to have developed SLSN, but four maintained the diagnosis of LCA as the kidney function remained normal. CONCLUSIONS Results show that the onset of renal failure in patients with IQCB1 mutations is highly variable, and that mutations are also found in LCA patients without nephronophthisis, rendering IQCB1 a new gene for LCA. However, these patients are at high risk for developing renal failure, which in early stages is often not recognized and can cause sudden death from fluid and electrolyte imbalance. It is therefore recommended that all LCA patients be screened for IQCB1 mutations, to follow them more closely for kidney disease.


Human Mutation | 2010

Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290‐related phenotypes

Frauke Coppieters; Ingele Casteels; Françoise Meire; Sarah De Jaegere; Sally Hooghe; Nicole Van Regemorter; Hilde Van Esch; Aušra Matulevičienė; Luís Nunes; Valerie Meersschaut; Sophie Walraedt; L Standaert; Paul Coucke; Heidi Hoeben; Hester Y. Kroes; Johan Vande Walle; Thomy de Ravel; Bart P. Leroy; Elfride De Baere

Leber Congenital Amaurosis (LCA), the most severe inherited retinal dystrophy, is genetically heterogeneous, with 14 genes accounting for 70% of patients. Here, 91 LCA probands underwent LCA chip analysis and subsequent sequencing of 6 genes (CEP290, CRB1, RPE65, GUCY2D, AIPL1and CRX), revealing mutations in 69% of the cohort, with major involvement of CEP290 (30%). In addition, 11 patients with early‐onset retinal dystrophy (EORD) and 13 patients with Senior‐Loken syndrome (SLS), LCA‐Joubert syndrome (LCA‐JS) or cerebello‐oculo‐renal syndrome (CORS) were included. Exhaustive re‐inspection of the overall phenotypes in our LCA cohort revealed novel insights mainly regarding the CEP290‐related phenotype. The AHI1 gene was screened as a candidate modifier gene in three patients with the same CEP290 genotype but different neurological involvement. Interestingly, a heterozygous novel AHI1 mutation, p.Asn811Lys, was found in the most severely affected patient. Moreover, AHI1 screening in five other patients with CEP290‐related disease and neurological involvement revealed a second novel missense variant, p.His758Pro, in one LCA patient with mild mental retardation and autism. These two AHI1 mutations might thus represent neurological modifiers of CEP290‐related disease.


Genetics in Medicine | 2012

Massively parallel sequencing for early molecular diagnosis in Leber congenital amaurosis

Frauke Coppieters; Bram De Wilde; Steve Lefever; Ellen De Meester; Nina De Rocker; Caroline Van Cauwenbergh; Filip Pattyn; Françoise Meire; Bart P. Leroy; Jan Hellemans; Jo Vandesompele; Elfride De Baere

Purpose:Leber congenital amaurosis (LCA) is a rare congenital retinal dystrophy associated with 16 genes. Recent breakthroughs in LCA gene therapy offer the first prospect of treating inherited blindness, which requires an unequivocal and early molecular diagnosis. While present genetic tests do not address this due to a tremendous genetic heterogeneity, massively parallel sequencing (MPS) strategies might bring a solution. Here, we developed a comprehensive molecular test for LCA based on targeted MPS of all exons of 16 known LCA genes.Methods:We designed a unique and flexible workflow for targeted resequencing of all 236 exons from 16 LCA genes based on quantitative PCR (qPCR) amplicon ligation, shearing, and parallel sequencing of multiple patients on a single lane of a short-read sequencer. Twenty-two prescreened LCA patients were included, five of whom had a known molecular cause.Results:Validation of 107 variations was performed as proof of concept. In addition, the causal genetic defect and a single heterozygous mutation were identified in 3 and 5, respectively, of 17 patients without previously identified mutations.Conclusion:We propose a novel targeted MPS-based approach that is suitable for accurate, fast, and cost-effective early molecular testing in LCA, and easily applicable in other genetic disorders.Genet Med 2012:14(6):576–585


Genetics in Medicine | 2014

Identity-by-descent–guided mutation analysis and exome sequencing in consanguineous families reveals unusual clinical and molecular findings in retinal dystrophy

Frauke Coppieters; Kristof Van Schil; Miriam Bauwens; Hannah Verdin; Annelies De Jaegher; Delfien Syx; Tom Sante; Steve Lefever; Nouha Bouayed Abdelmoula; Fanny Depasse; Ingele Casteels; Thomy de Ravel; Françoise Meire; Bart P. Leroy; Elfride De Baere

Purpose:Autosomal recessive retinal dystrophies are clinically and genetically heterogeneous, which hampers molecular diagnosis. We evaluated identity-by-descent–guided Sanger sequencing or whole-exome sequencing in 26 families with nonsyndromic (19) or syndromic (7) autosomal recessive retinal dystrophies to identify disease-causing mutations.Methods:Patients underwent genome-wide identity-by-descent mapping followed by Sanger sequencing (16) or whole-exome sequencing (10). Whole-exome sequencing data were filtered against identity-by-descent regions and known retinal dystrophy genes. The medical history was reviewed in mutation-positive families.Results:We identified mutations in 14 known retinal dystrophy genes in 20/26 (77%) families: ABCA4, CERKL, CLN3, CNNM4, C2orf71, IQCB1, LRAT, MERTK, NMNAT1, PCDH15, PDE6B, RDH12, RPGRIP1, and USH2A. Whole-exome sequencing in single individuals revealed mutations in either the largest or smaller identity-by-descent regions, and a compound heterozygous genotype in NMNAT1. Moreover, a novel deletion was found in PCDH15. In addition, we identified mutations in CLN3, CNNM4, and IQCB1 in patients initially diagnosed with nonsyndromic retinal dystrophies.Conclusion:Our study emphasized that identity-by-descent–guided mutation analysis and/or whole-exome sequencing are powerful tools for the molecular diagnosis of retinal dystrophy. Our approach uncovered unusual molecular findings and unmasked syndromic retinal dystrophies, guiding future medical management. Finally, elucidating ABCA4, LRAT, and MERTK mutations offers potential gene-specific therapeutic perspectives.Genet Med 16 9, 671–680.


Human Mutation | 2015

An Augmented ABCA4 Screen Targeting Noncoding Regions Reveals a Deep Intronic Founder Variant in Belgian Stargardt Patients

Miriam Bauwens; Julie De Zaeytijd; Nicole Weisschuh; Susanne Kohl; Françoise Meire; Karin Dahan; Fanny Depasse; Sarah De Jaegere; Thomy de Ravel; Marjan De Rademaeker; Bart Loeys; Frauke Coppieters; Bart P. Leroy; Elfride De Baere

Autosomal‐recessive Stargardt disease (STGD1) is hallmarked by a large proportion of patients with a single heterozygous causative variant in the disease gene ABCA4. Braun et al. ( ) reported deep intronic variants of ABCA4 in STGD1 patients with one coding variant, prompting us to perform an augmented screen in 131 Belgian STGD1 patients with one or no ABCA4 variant to uncover deep intronic causal ABCA4 variants. This revealed a second variant in 28.6% of cases. Twenty‐six percent of these carry the same causal variant c.4539+2001G>A (V4). Haplotyping in V4 carriers showed a common region of 63 kb, suggestive of a founder mutation. Genotype–phenotype correlations suggest a moderate‐to‐severe impact of V4 on the STGD1 phenotype. In conclusion, V4 occurs in a high fraction of Belgian STGD1 patients and represents the first deep intronic founder mutation in ABCA4. This emphasizes the importance of augmented molecular genetic testing of ABCA4 in Belgian STGD1.


Genetics in Medicine | 2017

NR5A1 is a novel disease gene for 46,XX testicular and ovotesticular disorders of sex development

Dorien Baetens; Hans Stoop; Frank Peelman; Anne-Laure Todeschini; Toon Rosseel; Frauke Coppieters; Reiner A. Veitia; Leendert Looijenga; Elfride De Baere; Martine Cools

Purpose:We aimed to identify the genetic cause in a cohort of 11 unrelated cases and two sisters with 46,XX SRY-negative (ovo)testicular disorders of sex development (DSD).Methods:Whole-exome sequencing (n = 9), targeted resequencing (n = 4), and haplotyping were performed. Immunohistochemistry of sex-specific markers was performed on patients’ gonads. The consequences of mutation were investigated using luciferase assays, localization studies, and RNA-seq.Results:We identified a novel heterozygous NR5A1 mutation, c.274C>T p.(Arg92Trp), in three unrelated patients. The Arg92 residue is highly conserved and located in the Ftz-F1 region, probably involved in DNA-binding specificity and stability. There were no consistent changes in transcriptional activation or subcellular localization. Transcriptomics in patient-derived lymphocytes showed upregulation of MAMLD1, a direct NR5A1 target previously associated with 46,XY DSD. In gonads of affected individuals, ovarian FOXL2 and testicular SRY-independent SOX9 expression observed.Conclusions:We propose NR5A1, previously associated with 46,XY DSD and 46,XX primary ovarian insufficiency, as a novel gene for 46,XX (ovo)testicular DSD. We hypothesize that p.(Arg92Trp) results in decreased inhibition of the male developmental pathway through downregulation of female antitestis genes, thereby tipping the balance toward testicular differentiation in 46,XX individuals. In conclusion, our study supports a role for NR5A1 in testis differentiation in the XX gonad.Genet Med 19 4, 367–376.


Human Mutation | 2015

Flexible, Scalable, and Efficient Targeted Resequencing on a Benchtop Sequencer for Variant Detection in Clinical Practice

Kim De Leeneer; Jan Hellemans; Wouter Steyaert; Steve Lefever; Inge Vereecke; Eveline Debals; Brecht Crombez; Machteld Baetens; Mattias Van Heetvelde; Frauke Coppieters; Jo Vandesompele; Annelies De Jaegher; Elfride De Baere; Paul Coucke; Kathleen Claes

The release of benchtop next‐generation sequencing (NGS) instruments has paved the way to implement the technology in clinical setting. The need for flexible, qualitative, and cost‐efficient workflows is high. We used singleplex‐PCR for highly efficient target enrichment, allowing us to reach the quality standards set in Sanger sequencing‐based diagnostics. For the library preparation, a modified NexteraXT protocol was used, followed by sequencing on a MiSeq instrument. With an innovative pooling strategy, high flexibility, scalability, and cost‐efficiency were obtained, independent of the availability of commercial kits. The approach was validated for ∼250 genes associated with monogenic disorders. An overall sensitivity (>99%) similar to Sanger sequencing was observed in combination with a positive predictive value of >98%. The distribution of coverage was highly uniform, guaranteeing a minimal number of gaps to be filled with alternative methods. ISO15189‐accreditation was obtained for the workflow. A major asset of the singleplex PCR‐based enrichment is that new targets can be easily implemented. Diagnostic laboratories have validated assays available ensuring that the proposed workflow can easily be adopted. Although our platform was optimized for constitutional variant detection of monogenic disease genes, it is now also used as a model for somatic mutation detection in acquired diseases.


Genetics in Medicine | 2015

Early-onset autosomal recessive cerebellar ataxia associated with retinal dystrophy: new human hotfoot phenotype caused by homozygous GRID2 deletion

Kristof Van Schil; Françoise Meire; Marcus Karlstetter; Miriam Bauwens; Hannah Verdin; Frauke Coppieters; Eva Scheiffert; Christian Van Nechel; Thomas Langmann; Nicolas Deconinck; Elfride De Baere

Purpose:The aim of this study was to identify the genetic cause of early-onset autosomal recessive cerebellar ataxia associated with retinal dystrophy in a consanguineous family.Methods:An affected 6-month-old child underwent neurological and ophthalmological examinations. Genetic analyses included homozygosity mapping, copy number analysis, conventional polymerase chain reaction, Sanger sequencing, quantitative polymerase chain reaction, and whole-exome sequencing. Expression analysis of GRID2 was performed by quantitative polymerase chain reaction and immunohistochemistry.Results:A homozygous deletion of exon 2 of GRID2 (p.Gly30_Glu81del) was identified in the proband. GRID2 encodes an ionotropic glutamate receptor known to be selectively expressed in cerebellar Purkinje cells. Here, we demonstrated GRID2 expression in human adult retina and retinal pigment epithelium. In addition, Grid2 expression was demonstrated in different stages of murine retinal development. GRID2 immunostaining was shown in murine and human retina. Whole-exome sequencing in the proband did not provide arguments for other disease-causing mutations, supporting the idea that the phenotype observed represents a single clinical entity.Conclusion:We identified GRID2 as an underlying disease gene of early-onset autosomal recessive cerebellar ataxia with retinal dystrophy, expanding the clinical spectrum of GRID2 deletion mutants. We demonstrated for the first time GRID2 expression and localization in human and murine retina, providing evidence for a novel functional role of GRID2 in the retina.Genet Med 17 4, 291–299.

Collaboration


Dive into the Frauke Coppieters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart P. Leroy

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Bauwens

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah Verdin

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

E De Baere

Ghent University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge