Malene L. Urbanus
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malene L. Urbanus.
Science | 2014
Anna Y. Lee; Robert P. St.Onge; Michael J. Proctor; Iain M. Wallace; Aaron H. Nile; Paul A. Spagnuolo; Yulia Jitkova; Marcela Gronda; Yan Wu; Moshe K. Kim; Kahlin Cheung-Ong; Nikko P. Torres; Eric D. Spear; Mitchell K.L. Han; Ulrich Schlecht; Sundari Suresh; Geoffrey Duby; Lawrence E. Heisler; Anuradha Surendra; Eula Fung; Malene L. Urbanus; Marinella Gebbia; Elena Lissina; Molly Miranda; Jennifer Chiang; Ana Aparicio; Mahel Zeghouf; Ronald W. Davis; Jacqueline Cherfils; Marc Boutry
Yeasty HIPHOP In order to identify how chemical compounds target genes and affect the physiology of the cell, tests of the perturbations that occur when treated with a range of pharmacological chemicals are required. By examining the haploinsufficiency profiling (HIP) and homozygous profiling (HOP) chemogenomic platforms, Lee et al. (p. 208) analyzed the response of yeast to thousands of different small molecules, with genetic, proteomic, and bioinformatic analyses. Over 300 compounds were identified that targeted 121 genes within 45 cellular response signature networks. These networks were used to extrapolate the likely effects of related chemicals, their impact upon genetic pathways, and to identify putative gene functions. Guilt by association helps identify the chemogenomic signatures of compounds targeting yeast genes. Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.
Genome Biology | 2012
Rick Orij; Malene L. Urbanus; Franco J. Vizeacoumar; Guri Giaever; Charles Boone; Corey Nislow; Stanley Brul; Gertien J. Smits
BackgroundBecause protonation affects the properties of almost all molecules in cells, cytosolic pH (pHc) is usually assumed to be constant. In the model organism yeast, however, pHc changes in response to the presence of nutrients and varies during growth. Since small changes in pHc can lead to major changes in metabolism, signal transduction, and phenotype, we decided to analyze pHc control.ResultsIntroducing a pH-sensitive reporter protein into the yeast deletion collection allowed quantitative genome-wide analysis of pHc in live, growing yeast cultures. pHc is robust towards gene deletion; no single gene mutation led to a pHc of more than 0.3 units lower than that of wild type. Correct pHc control required not only vacuolar proton pumps, but also strongly relied on mitochondrial function. Additionally, we identified a striking relationship between pHc and growth rate. Careful dissection of cause and consequence revealed that pHc quantitatively controls growth rate. Detailed analysis of the genetic basis of this control revealed that the adequate signaling of pHc depended on inositol polyphosphates, a set of relatively unknown signaling molecules with exquisitely pH sensitive properties.ConclusionsWhile pHc is a very dynamic parameter in the normal life of yeast, genetically it is a tightly controlled cellular parameter. The coupling of pHc to growth rate is even more robust to genetic alteration. Changes in pHc control cell division rate in yeast, possibly as a signal. Such a signaling role of pHc is probable, and may be central in development and tumorigenesis.
Journal of Clinical Investigation | 2013
Mahadeo A. Sukhai; Swayam Prabha; Rose Hurren; Angela Rutledge; Anna Y. Lee; Shrivani Sriskanthadevan; Hong Sun; Xiaoming Wang; Marko Skrtic; Ayesh Seneviratne; Maria Cusimano; Bozhena Jhas; Marcela Gronda; Neil MacLean; Eunice E. Cho; Paul A. Spagnuolo; Sumaiya Sharmeen; Marinella Gebbia; Malene L. Urbanus; Kolja Eppert; Dilan Dissanayake; Alexia Jonet; Alexandra Dassonville-Klimpt; Xiaoming Li; Alessandro Datti; Pamela S. Ohashi; Jeff Wrana; Ian Rogers; Pascal Sonnet; William Y. Ellis
Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML.
Chemistry & Biology | 2011
Iain M. Wallace; Malene L. Urbanus; Genna M. Luciani; Andrew R. Burns; Mitchell K.L. Han; Hao Wang; Kriti Arora; Lawrence E. Heisler; Mark R. Proctor; Robert P. St.Onge; Terry Roemer; Peter J. Roy; Carolyn L. Cummins; Gary D. Bader; Corey Nislow; Guri Giaever
Preselection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in Saccharomyces cerevisiae and identified ~7500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate. These data were used to build a model to predict compounds that inhibit yeast growth. Empirical and in silico application of the model enriched the discovery of bioactive compounds in diverse model organisms. To demonstrate the potential of these molecules as lead chemical probes, we used chemogenomic profiling in yeast and identified specific inhibitors of lanosterol synthase and of stearoyl-CoA 9-desaturase. As community resources, the ~7500 growth-inhibitory molecules have been made commercially available and the computational model and filter used are provided.
Methods of Molecular Biology | 2011
Mark R. Proctor; Malene L. Urbanus; Eula L. Fung; Daniel F. Jaramillo; Ronald W. Davis; Corey Nislow; Guri Giaever
The automated cell, compound and environment screening system (ACCESS) was developed as an automated platform for chemogenomic research. In the yeast Saccharomyces cerevisiae, a number of genomic screens rely on the modulation of gene dose to determine the mode of action of bioactive compounds or the effects of environmental/compound perturbations. These and other phenotypic experiments have been shown to benefit from high-resolution growth curves and a highly automated controlled environment system that enables a wide range of multi-well assays that can be run over many days without any manual intervention. Furthermore, precise control of drug dosing, timing of drug exposure, and precise timing of cell harvesting at specific generation times are important for optimal results. Some of these benefits include the ability to derive fine distinctions between growth rates of mutant strains (1) and the discovery of novel compounds and drug targets (2). The automation has also enabled large-scale screening projects with over 100,000 unique compounds screened to date including a thousand genome-wide screens (3). The ACCESS system also has a diverse set of software tools to enable users to set up, run, annotate, and evaluate complex screens with minimal training.
Molecular Systems Biology | 2016
Malene L. Urbanus; Andrew T. Quaile; Peter J. Stogios; Mariya Morar; Chitong Rao; Rosa Di Leo; Elena Evdokimova; Mandy H. Y. Lam; Christina Oatway; Marianne E. Cuff; Jerzy Osipiuk; Karolina Michalska; Boguslaw Nocek; Mikko Taipale; Alexei Savchenko; Alexander W. Ensminger
Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila‐translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effectors function. Metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.
Structure | 2015
Andrew T. Quaile; Malene L. Urbanus; Peter J. Stogios; Boguslaw Nocek; Tatiana Skarina; Alexander W. Ensminger; Alexei Savchenko
LubX is part of the large arsenal of effectors in Legionella pneumophila that are translocated into the host cytosol during infection. Despite such unique features as the presence of two U-box motifs and its targeting of another effector SidH, the molecular basis of LubX activity remains poorly understood. Here we show that the N terminus of LubX is able to activate an extended number of ubiquitin-conjugating (E2) enzymes including UBE2W, UBEL6, and all tested members of UBE2D and UBE2E families. Crystal structures of LubX alone and in complex with UBE2D2 revealed drastic molecular diversification between the two U-box domains, with only the N-terminal U-box retaining E2 recognition features typical for its eukaryotic counterparts. Extensive mutagenesis followed by functional screening in a yeast model system captured functionally important LubX residues including Arg121, critical for interactions with SidH. Combined, these data provide a new molecular insight into the function of this unique pathogenic factor.
Nature Chemical Biology | 2011
Genna M. Luciani; Lilia Magomedova; Rachel Puckrin; Malene L. Urbanus; Iain M. Wallace; Guri Giaever; Corey Nislow; Carolyn L. Cummins; Peter J. Roy
The DAF-9 cytochrome P450 is a key regulator of dauer formation, developmental timing and longevity in the nematode Caenorhabditis elegans. Here we describe the first identified chemical inhibitor of DAF-9 and the first reported small-molecule tool that robustly induces dauer formation in typical culture conditions. This molecule (called dafadine) also inhibits the mammalian ortholog of DAF-9(CYP27A1), suggesting that dafadine can be used to interrogate developmental control and longevity in other animals.
PLOS Genetics | 2011
Elena Lissina; Brian Young; Malene L. Urbanus; Xue Li Guan; Jonathan D. Lowenson; Shawn Hoon; Anastasia Baryshnikova; Isabelle Riezman; Magali Michaut; Howard Riezman; Leah E. Cowen; Markus R. Wenk; Steven Clarke; Guri Giaever; Corey Nislow
Using small molecule probes to understand gene function is an attractive approach that allows functional characterization of genes that are dispensable in standard laboratory conditions and provides insight into the mode of action of these compounds. Using chemogenomic assays we previously identified yeast Crg1, an uncharacterized SAM-dependent methyltransferase, as a novel interactor of the protein phosphatase inhibitor cantharidin. In this study we used a combinatorial approach that exploits contemporary high-throughput techniques available in Saccharomyces cerevisiae combined with rigorous biological follow-up to characterize the interaction of Crg1 with cantharidin. Biochemical analysis of this enzyme followed by a systematic analysis of the interactome and lipidome of CRG1 mutants revealed that Crg1, a stress-responsive SAM-dependent methyltransferase, methylates cantharidin in vitro. Chemogenomic assays uncovered that lipid-related processes are essential for cantharidin resistance in cells sensitized by deletion of the CRG1 gene. Lipidome-wide analysis of mutants further showed that cantharidin induces alterations in glycerophospholipid and sphingolipid abundance in a Crg1-dependent manner. We propose that Crg1 is a small molecule methyltransferase important for maintaining lipid homeostasis in response to drug perturbation. This approach demonstrates the value of combining chemical genomics with other systems-based methods for characterizing proteins and elucidating previously unknown mechanisms of action of small molecule inhibitors.
Genome Biology | 2012
Simon E. Alfred; Anuradha Surendra; Chris Le; Ken Lin; Alexander Mok; Iain M. Wallace; Mark R. Proctor; Malene L. Urbanus; Guri Giaever; Corey Nislow
Chemical biology, the interfacial discipline of using small molecules as probes to investigate biology, is a powerful approach of developing specific, rapidly acting tools that can be applied across organisms. The single-celled alga Chlamydomonas reinhardtii is an excellent model system because of its photosynthetic ability, cilia-related motility and simple genetics. We report the results of an automated fitness screen of 5,445 small molecules and subsequent assays on motility/phototaxis and photosynthesis. Cheminformatic analysis revealed active core structures and was used to construct a naïve Bayes model that successfully predicts algal bioactive compounds.