Rucha Patel
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rucha Patel.
Journal of Clinical Investigation | 2011
Rucha Patel; Monika Patel; Ricky Tsai; Vicky Y. Lin; Angie L. Bookout; Yuan Zhang; Lilia Magomedova; Tingting Li; Jessica F. Chan; Conrad Budd; David J. Mangelsdorf; Carolyn L. Cummins
Although widely prescribed for their potent antiinflammatory actions, glucocorticoid drugs (e.g., dexamethasone) cause undesirable side effects that are features of the metabolic syndrome, including hyperglycemia, fatty liver, insulin resistance, and type II diabetes. Liver x receptors (LXRs) are nuclear receptors that respond to cholesterol metabolites and regulate the expression of a subset of glucocorticoid target genes. Here, we show LXRβ is required to mediate many of the negative side effects of glucocorticoids. Mice lacking LXRβ (but not LXRα) were resistant to dexamethasone-induced hyperglycemia, hyperinsulinemia, and hepatic steatosis, but remained sensitive to dexamethasone-dependent repression of the immune system. In vivo, LXRα/β knockout mice demonstrated reduced dexamethasone-induced expression of the key hepatic gluconeogenic gene, phosphoenolpyruvate carboxykinase (PEPCK). In perfused liver and primary mouse hepatocytes, LXRβ was required for glucocorticoid-induced recruitment of the glucocorticoid receptor to the PEPCK promoter. These findings suggest a new avenue for the design of safer glucocorticoid drugs through a mechanism of selective glucocorticoid receptor transactivation.
Molecular Endocrinology | 2014
Rucha Patel; Jasmine Williams-Dautovich; Carolyn L. Cummins
The glucocorticoid receptor (GR) was one of the first nuclear hormone receptors cloned and represents one of the most effective drug targets available today for the treatment of severe inflammation. The physiologic consequences of endogenous or exogenous glucocorticoid excess are well established and include hyperglycemia, insulin resistance, fatty liver, obesity, and muscle wasting. However, at the molecular and tissue-specific level, there are still many unknown protein mediators of glucocorticoid response and thus, much remains to be uncovered that will help determine whether activation of the GR can be tailored to improve therapeutic efficacy while minimizing unwanted side effects. This review summarizes recent discoveries of tissue-selective modulators of glucocorticoid signaling that are important in mediating the unwanted side effects of therapeutic glucocorticoid use, emphasizing the downstream molecular effects of GR activation in the liver, adipose tissue, muscle, and pancreas.
Molecular Endocrinology | 2015
Rucha Patel; Angie L. Bookout; Lilia Magomedova; Bryn M. Owen; Giulia P. Consiglio; Makoto Shimizu; Yuan Zhang; David J. Mangelsdorf; Steven A. Kliewer; Carolyn L. Cummins
Hormones such as fibroblast growth factor 21 (FGF21) and glucocorticoids (GCs) play crucial roles in coordinating the adaptive starvation response. Here we examine the interplay between these hormones. It was previously shown that FGF21 induces corticosterone levels in mice by acting on the brain. We now show that this induces the expression of genes required for GC synthesis in the adrenal gland. FGF21 also increases corticosterone secretion from the adrenal in response to ACTH. We further show that the relationship between FGF21 and GCs is bidirectional. GCs induce Fgf21 expression in the liver by acting on the GC receptor (GR). The GR binds in a ligand-dependent manner to a noncanonical GR response element located approximately 4.4 kb upstream of the Fgf21 transcription start site. The GR cooperates with the nuclear fatty acid receptor, peroxisome proliferator-activated receptor-α, to stimulate Fgf21 transcription. GR and peroxisome proliferator-activated receptor-α ligands have additive effects on Fgf21 expression both in vivo and in primary cultures of mouse hepatocytes. We conclude that FGF21 and GCs regulate each others production in a feed-forward loop and suggest that this provides a mechanism for bypassing negative feedback on the hypothalamic-pituitary-adrenal axis to allow sustained gluconeogenesis during starvation.
Antimicrobial Agents and Chemotherapy | 2013
Gary N. Y. Chan; Rucha Patel; Carolyn L. Cummins; Reina Bendayan
ABSTRACT The membrane-associated drug transporter P-glycoprotein (P-gp) plays an essential role in drug efflux from the brain. Induction of this protein at the blood-brain barrier (BBB) could further affect the ability of a drug to enter the brain. At present, P-gp induction mediated by antiretroviral drugs at the BBB has not been fully investigated. Since P-gp expression is regulated by ligand-activated nuclear receptors, i.e., human pregnane X receptor (hPXR) and human constitutive androstane receptor (hCAR), these receptors could represent potential pathways involved in P-gp induction by antiretroviral drugs. The aims of this study were (i) to determine whether antiretroviral drugs currently used in HIV pharmacotherapy are ligands for hPXR or hCAR and (ii) to examine P-gp function and expression in human brain microvessel endothelial cells treated with antiretroviral drugs identified as ligands of hPXR and/or hCAR. Luciferase reporter gene assays were performed to examine the activation of hPXR and hCAR by antiretroviral drugs. The hCMEC/D3 cell line, which is known to display several morphological and biochemical properties of the BBB in humans, was used to examine P-gp induction following 72 h of exposure to these agents. Amprenavir, atazanavir, darunavir, efavirenz, ritonavir, and lopinavir were found to activate hPXR, whereas abacavir, efavirenz, and nevirapine were found to activate hCAR. P-gp expression and function were significantly induced in hCMEC/D3 cells treated with these drugs at clinical concentrations in plasma. Together, our data suggest that P-gp induction could occur at the BBB during chronic treatment with antiretroviral drugs identified as ligands of hPXR and/or hCAR.
Endocrinology | 2016
Kejing Zeng; Lili Tian; Rucha Patel; Weijuan Shao; Zhuolun Song; Ling Liu; Justin Manuel; Xue-Zhong Ma; Ian D. McGilvray; Carolyn L. Cummins; Jianping Weng; Tianru Jin
We found previously that short-term curcumin gavage stimulated mouse hepatic fibroblast growth factor 21 (Fgf21) expression. Here we conducted mechanistic exploration and investigated the potential pathophysiological relevance on this regulation. Fgf21 stimulation was observed at messenger RNA and protein levels in mice with daily curcumin gavage for 4 or 8 days and in primary hepatocytes with curcumin treatment. Using peroxisome proliferator-activated receptor α (PPARα) agonist and antagonist, along with luciferase reporter and chromatin immune-precipitation approaches, we determined that curcumin stimulates Fgf21 transcription in a mechanism involving PPARα activation. High-fat diet (HFD) feeding also increased mouse hepatic and serum Fgf21 levels, whereas dietary curcumin intervention attenuated these increases. We found that HFD feeding reduced hepatic expression levels of genes that encode FGFR1 and βKlotho, PGC1α, and the targets of the PPARα-PGC1α axis, whereas concomitant curcumin intervention restored or partially restored their expression levels. Importantly, hepatocytes from HFD-fed mice showed a loss of response to FGF21 treatment on Erk phosphorylation and the expression of Egr1 and cFos; this response was restored in hepatocytes from HFD-fed mice with curcumin intervention. This investigation expanded our mechanistic understanding of the metabolic beneficial effects of dietary curcumin intervention involving the regulation of Fgf21 production and the attenuation of HFD-induced Fgf21 resistance.
Endocrinology | 2017
Rucha Patel; Lilia Magomedova; Ricky Tsai; Stephane Angers; Arturo Orellana; Carolyn L. Cummins
Synthetic glucocorticoids (GCs), including dexamethasone (DEX), are powerful anti-inflammatory drugs. Long-term use of GCs, however, can result in metabolic side effects such as hyperglycemia, hepatosteatosis, and insulin resistance. The GC receptor (GR) and liver X receptors (LXRα and LXRβ) regulate overlapping genes involved in gluconeogenesis and inflammation. We have previously shown that Lxrβ-/- mice are resistant to the diabetogenic effects of DEX but still sensitive to its immunosuppressive actions. To determine whether this finding could be exploited for therapeutic intervention, we treated mice with GSK2033, a pan-LXR antagonist, alone or combined with DEX. GSK2033 suppressed GC-induced gluconeogenic gene expression without affecting immune-responsive GR target genes. The suppressive effect of GSK2033 on DEX-induced gluconeogenic genes was specific to LXRβ, was liver cell autonomous, and occurred in a target gene-specific manner. Compared with DEX treatment alone, the coadministration of GSK2033 with DEX decreased the recruitment of GR and its accessory factors MED1 and C/EBPβ to the phosphoenolpyruvate carboxykinase promoter. However, GSK2033 had no effect on DEX-mediated suppression of inflammatory genes expressed in the liver or in mouse primary macrophages stimulated with lipopolysaccharides. In conclusion, our study provides evidence that the gluconeogenic and immunosuppressive actions of GR activation can be mechanistically dissociated by pharmacological antagonism of LXRβ. Treatment with an LXRβ antagonist could allow the safer use of existing GC drugs in patients requiring chronic dosing of anti-inflammatory agents for the treatment of diseases such as rheumatoid arthritis and inflammatory bowel disease.
bioRxiv | 2016
Lilia Magomedova; Jens Tiefenbach; Emma Zilberman; Veronique Voisin; Mélanie Robitaille; Serge Gueroussov; Manuel Irimia; Debashish Ray; Rucha Patel; ChangJiang Xu; Pancharatnam Jeyasuria; Gary D. Bader; Timothy R. Hughes; Henry M. Krause; Benjamin J. Blencowe; Stephane Angers; Carolyn L. Cummins
Prolonged exposure to glucocorticoid stress hormones precipitates mood and cognitive disorders. We identified arginine and glutamate rich 1 (ARGLU1) in a screen for new modulators of glucocorticoid signaling in the CNS. Biochemical studies found that the glutamate rich C-terminus coactivates the glucocorticoid receptor (GR) and the arginine rich N-terminus interacts with splicing factors and RNA. RNA-seq of neuronal cells ±siARGLU1found significant changes in the expression and alternative splicing of distinct genes involved in neurogenesis. Loss of ARGLU1 was embryonic lethal in mice, and knockdown in zebrafish caused neurodevelopmental and heart defects. Treatment with dexamethasone, a GR activator, also induced changes in the pattern of alternatively spliced genes, highlighting an underappreciated global mechanism of glucocorticoid action in neuronal cells. Thus, in addition to its basal role, ARGLU1 links glucocorticoid-mediated transcription and alternative splicing in neural cells, providing new avenues from which to investigate the molecular underpinnings of cognitive stress disorders.
JBMR Plus | 2017
Jasmine Williams-Dautovich; Keertika Yogendirarajah; Ariana Dela Cruz; Rucha Patel; Ricky Tsai; Stuart A Morgan; Jane Mitchell; Marc D. Grynpas; Carolyn L. Cummins
Glucocorticoids (GCs) have unparalleled anti‐inflammatory and immunosuppressive properties, which accounts for their widespread prescription and use. Unfortunately, a limitation to GC therapy is a wide range of negative side effects including Cushings syndrome, a disease characterized by metabolic abnormalities including muscle wasting and osteoporosis. GC‐induced osteoporosis occurs in 30% to 50% of patients on GC therapy and thus, represents an important area of study. Herein, we characterize the molecular and physiologic effects of GC‐induced osteoporosis using the Cushings mouse model, the corticotropin releasing hormone (CRH) transgenic mouse (CRH‐Tg). The humeri, femurs, and tibias from wild‐type (WT) and CRH‐Tg male mice, aged 13 to 14 weeks old were subjected to multiple bone tests including, micro–computed tomography (μCT), static and dynamic histomorphometry, strength testing, and gene expression analyses. The CRH‐Tg mice had a 38% decrease in cortical bone area, a 35% decrease in cortical thickness, a 16% decrease in trabecular thickness, a sixfold increase in bone adiposity, a 27% reduction in osteoid width, a 75% increase in bone‐resorbing osteoclast number/bone surface, a 34% decrease in bone formation rate, and a 40% decrease in bone strength compared to WT mice. At the gene expression level, CRH‐Tg bone showed significantly increased osteoclast markers and decreased osteoblast markers, whereas CRH‐Tg muscle had increased muscle atrophy gene markers compared to WT mice. Overall, the CRH‐Tg mouse model aged to 14 weeks recapitulated many features of osteoporosis in Cushings syndrome and thus, represents a useful model to study GC‐induced osteoporosis and interventions that target the effects of GCs on the skeleton.
Gastroenterology | 2014
Edwin C. Y. Chow; Lilia Magomedova; Holly P. Quach; Rucha Patel; Matthew R. Durk; Jianghong Fan; Han Joo Maeng; Kamdi Irondi; Sayeepriyadarshini Anakk; David D. Moore; Carolyn L. Cummins; K. Sandy Pang
Archive | 2014
Carolyn L. Cummins; Arturo Orellana; Rucha Patel; Fernando A. Fernandez