Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carry Croghan is active.

Publication


Featured researches published by Carry Croghan.


Journal of Exposure Science and Environmental Epidemiology | 2005

Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments

Marsha K. Morgan; Linda Sheldon; Carry Croghan; Paul A. Jones; Gary L Robertson; Jane C Chuang; Nancy K. Wilson; Christopher Lyu

As part of the Childrens Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) study, we investigated the exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol (TCP) in their everyday environments. During this study, the participants were still able to purchase and apply chlorpyrifos at their homes or day care centers. Participants were recruited randomly from 129 homes and 13 day care centers in six North Carolina counties. Monitoring was performed over a 48-h period at the childrens homes and/or day care centers. Samples that were collected included duplicate plate, indoor and outdoor air, urine, indoor floor dust, play area soil, transferable residues (PUF roller), and surface wipes (hand, food preparation, and hard floor). The samples were extracted and analyzed by gas chromatography/mass spectrometry. Chlorpyrifos was detected in 100% of the indoor air and indoor floor dust samples from homes and day care centers. TCP was detected at homes and day care centers in 100% of the indoor floor dust and hard floor surface wipe, in >97% of the solid food, and in >95% of the indoor air samples. Generally, median levels of chlorpyrifos were higher than those of TCP in all media, except for solid food samples. For these samples, the median TCP concentrations were 12 and 29 times higher than the chlorpyrifos concentrations at homes and day care centers, respectively. The median urinary TCP concentration for the preschool children was 5.3 ng/ml and the maximum value was 104 ng/ml. The median potential aggregate absorbed dose (ng/kg/day) of chlorpyrifos for these preschool children was estimated to be 3 ng/kg/day. The primary route of exposure to chlorpyrifos was through dietary intake, followed by inhalation. The median potential aggregate absorbed dose of TCP for these children was estimated to be 38 ng/kg/day, and dietary intake was the primary route of exposure. The median excreted amount of urinary TCP for these children was estimated to be 117 ng/kg/day. A full regression model of the relationships among chlorpyrifos and TCP for the children in the home group explained 23% of the variability of the urinary TCP concentrations by the three routes of exposure (inhalation, ingestion, dermal absorption) to chlorpyrifos and TCP. However, a final reduced model via step-wise regression retained only chlorpyrifos through the inhalation route and explained 22% of the variability of TCP in the childrens urine. The estimated potential aggregate absorbed doses of chlorpyrifos through the inhalation route were low (median value, 0.8 ng/kg/day) and could not explain most of the excreted amounts of urinary TCP. This suggested that there were other possible sources and pathways of exposure that contributed to the estimated potential aggregate absorbed doses of these children to chlorpyrifos and TCP. One possible pathway of exposure that was not accounted for fully is through the childrens potential contacts with contaminated surfaces at homes and day care centers. In addition, other pesticides such as chlorpyrifos-methyl may have also contributed to the levels of TCP in the urine. Future studies should include additional surface measurements in their estimation of potential absorbed doses of preschool children to environmental pollutants. In conclusion, the results showed that the preschool children were exposed to chlorpyrifos and TCP from several sources, through several pathways and routes.


Occupational and Environmental Medicine | 2011

Differences in blood pressure and vascular responses associated with ambient fine particulate matter exposures measured at the personal versus community level.

Robert D. Brook; Robert L. Bard; Richard T. Burnett; Hwashin H. Shin; Alan Vette; Carry Croghan; Michael J. Phillips; Charles E. Rodes; Jonathan Thornburg; Ron Williams

Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient- versus personal-level PM2.5 measurements. Methods Cardiovascular outcomes included vascular tone and function and blood pressure measured in 65 non-smoking subjects. PM2.5 exposure metrics included 24 h integrated personal- (by vest monitors) and community-based ambient levels measured for up to 5 consecutive days (357 observations). Associations between community- and personal-level PM2.5 exposures with alterations in cardiovascular outcomes were assessed by linear mixed models. Results Mean daily personal and community measures of PM2.5 were 21.9±24.8 and 15.4±7.5 μg/m3, respectively. Community PM2.5 levels were not associated with cardiovascular outcomes. However, a 10 μg/m3 increase in total personal-level PM2.5 exposure (TPE) was associated with systolic blood pressure elevation (+1.41 mm Hg; lag day 1, p<0.001) and trends towards vasoconstriction in subsets of individuals (0.08 mm; lag day 2 among subjects with low secondhand smoke exposure, p=0.07). TPE and secondhand smoke were associated with elevated systolic blood pressure on lag day 1. Flow-mediated dilatation was not associated with any exposure. Conclusions Exposure to higher personal-level PM2.5 during routine daily activity measured with low-bias and minimally-confounded personal monitors was associated with modest increases in systolic blood pressure and trends towards arterial vasoconstriction. Comparable elevations in community PM2.5 levels were not related to these outcomes, suggesting that specific components within personal and background ambient PM2.5 may elicit differing cardiovascular responses.


Journal of Exposure Science and Environmental Epidemiology | 2009

The design and field implementation of the Detroit Exposure and Aerosol Research Study

Ron Williams; Anne Rea; Alan Vette; Carry Croghan; Donald A. Whitaker; Carvin Stevens; Steve Mcdow; Roy C. Fortmann; Linda Sheldon; Holly Wilson; Jonathan Thornburg; Michael C. Phillips; Phil A. Lawless; Charles Rodes; Hunter Daughtrey

The US Environmental Protection Agency recently conducted the Detroit Exposure and Aerosol Research Study (DEARS). The study began in 2004 and involved community, residential, and personal-based measurements of air pollutants targeting 120 participants and their residences. The primary goal of the study was to evaluate and describe the relationship between air toxics, particulate matter (PM), PM constituents, and PM from specific sources measured at a central site monitor with those from the residential and personal locations. The impact of regional, local (point and mobile), and personal sources on pollutant concentrations and the role of physical and human factors that might influence these concentrations were investigated. A combination of active and passive sampling methodologies were employed in the collection of PM mass, criteria gases, semivolatile organics, and volatile organic compound air pollutants among others. Monitoring was conducted in six selected neighborhoods along with one community site using a repeated measure design. Households from each of the selected communities were monitored for 5 consecutive days in the winter and again in the summer. Household, participant and a variety of other surveys were utilized to better understand human and household factors that might affect the impact of ambient-based pollution sources upon personal and residential locations. A randomized recruitment strategy was successful in enrolling nearly 140 participants over the course of the study. Over 36,000 daily-based environmental data points or records were ultimately collected. This paper fully describes the design of the DEARS and the approach used to implement this field monitoring study and reports select preliminary findings.


Environmental Science & Technology | 2011

Assessing the Quantitative Relationships between Preschool Children’s Exposures to Bisphenol A by Route and Urinary Biomonitoring

Marsha K. Morgan; Paul A. Jones; Antonia M. Calafat; Xiaoyun Ye; Carry Croghan; Jane C Chuang; Nancy K. Wilson; Matthew Scott Clifton; Zaida Figueroa; Linda S. Sheldon

Limited published information exists on young childrens exposures to bisphenol A (BPA) in the United States using urinary biomonitoring. In a previous project, we quantified the aggregate exposures of 257 preschool children to BPA in environmental and personal media over 48-h periods in 2000-2001 at homes and daycares in North Carolina and Ohio. In the present study for 81 Ohio preschool children ages 23-64 months, we quantified the childrens urinary total BPA (free and conjugated) concentrations over these same 48-h periods in 2001. Then, we examined the quantitative relationships between the childrens intakes doses of BPA through the dietary ingestion, nondietary ingestion, and inhalation routes and their excreted amounts of urinary BPA. BPA was detected in 100% of the urine samples. The estimated median intake doses of BPA for these 81 children were 109 ng/kg/day (dietary ingestion), 0.06 ng/kg/day (nondietary ingestion), and 0.27 ng/kg/day (inhalation); their estimated median excreted amount of urinary BPA was 114 ng/kg/day. Our multivariable regression model showed that dietary intake of BPA (p = 0.04) and creatinine concentration (p = 0.004) were significant predictors of urinary BPA excretion, collectively explaining 17% of the variability in excretion. Dietary ingestion of BPA accounted for >95% of the childrens excreted amounts of urinary BPA.


Journal of Exposure Science and Environmental Epidemiology | 2010

Assessment of a pesticide exposure intensity algorithm in the agricultural health study

Kent Thomas; Mustafa Dosemeci; Joseph Coble; Jane A. Hoppin; Linda Sheldon; Guadalupe Chapa; Carry Croghan; Paul A. Jones; Charles Knott; Charles F. Lynch; Dale P. Sandler; Aaron Blair; Michael C. R. Alavanja

The accuracy of the exposure assessment is a critical factor in epidemiological investigations of pesticide exposures and health in agricultural populations. However, few studies have been conducted to evaluate questionnaire-based exposure metrics. The Agricultural Health Study (AHS) is a prospective cohort study of pesticide applicators who provided detailed questionnaire information on their use of specific pesticides. A field study was conducted for a subset of the applicators enrolled in the AHS to assess a pesticide exposure algorithm through comparison of algorithm intensity scores with measured exposures. Pre- and post-application urinary biomarker measurements were made for 2,4-D (n=69) and chlorpyrifos (n=17) applicators. Dermal patch, hand wipe, and personal air samples were also collected. Intensity scores were calculated using information from technician observations and an interviewer-administered questionnaire. Correlations between observer and questionnaire intensity scores were high (Spearmans r=0.92 and 0.84 for 2,4-D and chlorpyrifos, respectively). Intensity scores from questionnaires for individual applications were significantly correlated with post-application urinary concentrations for both 2,4-D (r=0.42, P<0.001) and chlorpyrifos (r=0.53, P=0.035) applicators. Significant correlations were also found between intensity scores and estimated hand loading, estimated body loading, and air concentrations for 2,4-D applicators (r-values 0.28–0.50, P-values<0.025). Correlations between intensity scores and dermal and air measures were generally lower for chlorpyrifos applicators using granular products. A linear regression model indicated that the algorithm factors for individual applications explained 24% of the variability in post-application urinary 2,4-D concentration, which increased to 60% when the pre-application urine concentration was included. The results of the measurements support the use of the algorithm for estimating questionnaire-based exposure intensities in the AHS for liquid pesticide products. Refinement of the algorithm may be possible using the results from this and other measurement studies.


Journal of Exposure Science and Environmental Epidemiology | 2008

Adult and children's exposure to 2,4-D from multiple sources and pathways

Marsha K. Morgan; Linda Sheldon; Kent Thomas; Peter P. Egeghy; Carry Croghan; Paul A. Jones; Jane C Chuang; Nancy K. Wilson

In this study, we investigated the 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide exposures of 135 preschool-aged children and their adult caregivers at 135 homes in North Carolina (NC) and Ohio (OH). Participants were randomly recruited from six NC and six OH counties. Monitoring was performed over a 48-h period at the participants’ homes. Environmental samples included soil, outdoor air, indoor air, and carpet dust. Personal samples collected by the adult caregivers concerning themselves and their children consisted of solid food, liquid food, hand wipe, and spot urine samples. All samples were analyzed for 2,4-D (free acid form) by gas chromatography/mass spectrometry. 2,4-D was detected in all types of environmental samples but most often in carpet dust samples, with detection frequencies of 83% and 98% in NC and OH, respectively. The median level of 2,4-D in the carpet dust samples was about three times higher in OH homes compared to NC homes (156 vs. 47.5 ng/g, P<0.0002). For personal samples, 2,4-D was more frequently detected in the hand wipe samples from OH participants (>48%) than from NC participants (<9%). Hand wipe levels at the 95th percentile were about five times higher for OH children (0.1 ng/cm2) and adults (0.03 ng/cm2) than for the NC children (0.02 ng/cm2) and adults (<0.005 ng/cm2). 2,4-D was detected in more than 85% of the child and adult urine samples in both states. The median urinary 2,4-D concentration was more than twice as high for OH children compared to NC children (1.2 vs. 0.5 ng/ml, P<0.0001); however, the median concentration was identical at 0.7 ng/ml for both NC and OH adults. The intraclass correlation coefficient of reliability for an individuals urinary 2,4-D measurements, estimated from the unadjusted (0.31–0.62) and specific gravity-adjusted (0.37–0.73) values, were somewhat low for each group in this study. The variability in urinary 2,4-D measurements over the 48-h period for both children and adults in NC and OH suggests that several spot samples were needed to adequately assess these participants’ exposures to 2,4-D in residential settings. Results from this study showed that children and their adult caregivers in NC and OH were likely exposed to 2,4-D through several pathways at their homes. In addition, our findings suggest that the OH children might have been exposed to higher levels of 2,4-D through the dermal and nondietary routes of exposure than the NC children and the NC and OH adults.


Journal of Exposure Science and Environmental Epidemiology | 2011

The reliability of using urinary biomarkers to estimate children's exposures to chlorpyrifos and diazinon.

Marsha K. Morgan; Linda Sheldon; Paul A. Jones; Carry Croghan; Jane C Chuang; Nancy K. Wilson

A few studies have reported concurrent levels of chlorpyrifos (CPF) and diazinon (DZN) and their environmentally occurring metabolites, 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-6-methyl-4-pyrimidinol (IMP), in food and in environmental media. This information raises questions regarding the reliability of using these same metabolites, TCP and IMP, as urinary biomarkers to quantitatively assess the everyday exposures of children to CPF and DZN, respectively. In this study, we quantified the distributions of CPF, DZN, TCP, and IMP in several environmental and personal media at the homes and day-care centers of 127 Ohio preschool children and identified the important sources and routes of their exposures. The children were exposed to concurrent levels of these four chemicals from several sources and routes at these locations. DZN and IMP were both detected above 50% in the air and dust samples. CPF and TCP were both detected in greater than 50% of the air, dust (solid), food, and hand wipe samples. TCP was detected in 100% of the urine samples. Results from our regression models showed that creatinine levels (<0.001), and dietary (P<0.001) and inhalation (P<0.10) doses of TCP were each significant predictors of urinary TCP, collectively explaining 27% of the urinary TCP variability. This information suggests that measurement of urinary TCP did not reliably allow quantitative estimation of the childrens everyday environmental exposures to CPF.


Environmental Health Perspectives | 2010

Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Arterial Hemodynamics and Vascular Function during the Same Day

Robert D. Brook; Hwashin H. Shin; Robert L. Bard; Richard T. Burnett; Alan Vette; Carry Croghan; Jonathan Thornburg; Charles Rodes; Ron Williams

Background Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Objectives We aimed to explore the effects of personal PM2.5 exposures within the preceding 24 hr on blood pressure (BP), heart rate (HR), brachial artery diameter (BAD), endothelial function [flow-mediated dilatation (FMD)], and nitroglycerin-mediated dilatation (NMD). Methods Fifty-one nonsmoking subjects had up to 5 consecutive days of 24-hr personal PM2.5 monitoring and daily cardiovascular (CV) measurements during summer and/or winter periods. The associations between integrated hour-long total personal PM2.5 exposure (TPE) levels (continuous nephelometry among compliant subjects with low secondhand tobacco smoke exposures; n = 30) with the CV outcomes were assessed over a 24-hr period by linear mixed models. Results We observed the strongest associations (and smallest estimation errors) between HR and TPE recorded 1–10 hr before CV measurements. The associations were not pronounced for the other time lags (11–24 hr). The associations between TPE and FMD or BAD did not show as clear a temporal pattern. However, we found some suggestion of a negative association with FMD and a positive association with BAD related to TPE just before measurement (0–2 hr). Conclusions Brief elevations in ambient TPE levels encountered during routine daily activity were associated with small increases in HR and trends toward conduit arterial vasodilatation and endothelial dysfunction within a few hours of exposure. These responses could reflect acute PM2.5-induced autonomic imbalance and may factor in the associated rapid increase in CV risk among susceptible individuals.


Journal of Exposure Science and Environmental Epidemiology | 2011

Methodologies for estimating cumulative human exposures to current-use pyrethroid pesticides

Nicolle S. Tulve; Peter P. Egeghy; Roy C. Fortmann; Jianping Xue; Jeff Evans; Donald A. Whitaker; Carry Croghan

We estimated cumulative residential pesticide exposures for a group of nine young children (4–6 years) using three different methodologies developed by the US Environmental Protection Agency and compared the results with estimates derived from measured urinary metabolite concentrations. The Standard Operating Procedures (SOPs) for Residential Exposure Assessment are intended to provide a screening-level assessment to estimate exposure for regulatory purposes. Nonetheless, dermal exposure estimates were typically lower from the SOP (1–1300 nmol/day) than from SHEDS (5–19,000 nmol/day) or any of the four different approaches for estimating dermal exposure using the Draft Protocol for Measuring Childrens Non-Occupational Exposure to Pesticides by all Relevant Pathways (Draft Protocol) (5–11,000 nmol/day). Indirect ingestion exposure estimates ranged from 0.02 to 21.5 nmol/day for the SOP, 0.5 to 188 nmol/day for SHEDS, and 0 to 3.38 nmol/day for the Draft Protocol. Estimates of total absorbed dose ranged from 3 to 37 nmol/day for the SOPs, 0.5 to 100 nmol/day for SHEDS, and 1 to 216 nmol/day for the Draft Protocol. The concentrations estimated using the Draft Protocol and SHEDS showed strong, positive relationships with the 3-phenoxybenzoic acid metabolite measured in the childrens urine samples (R2=0.90 for the Draft Protocol; R2=0.92 for SHEDS). Analysis of different approaches for estimating dermal exposure suggested that the approach assuming an even distribution of pesticide residue on the childs body was most reasonable. With all three methodologies providing reasonable estimates of exposure and dose, selection should depend on the available data and the objectives of the analysis. Further research would be useful to better understand how best to estimate dermal exposure for children and what exposure factors (e.g., activities, transfer coefficients, measurement techniques) are most relevant in making dermal exposure estimates.


Journal of Exposure Science and Environmental Epidemiology | 2012

The influence of human and environmental exposure factors on personal NO(2) exposures.

Ron Williams; Paul Jones; Carry Croghan; Jonathan Thornburg; Charles Rodes

The US Environmental Protection Agencys (US EPA) Detroit Exposure and Aerosol Research Study (DEARS) deployed a total of over 2000 nitrogen dioxide, NO2, passive monitors during 3 years of field data collections. These 24-h based personal, residential outdoor and community-based measurements allowed for the investigation of NO2 spatial, temporal, human and environmental factors. The relationships between personal exposures to NO2 and the factors that influence the relationship with community-based measurements were of interest. Survey data from 136 participants were integrated with exposure findings to allow for mixed model effect analyses. Ultimately, 50 individual factors were selected for examination. NO2 analyses revealed that season, exposure to environmental tobacco smoke and residential gas appliances were strong influencing factors. Only modest associations between community-based measures of nitrogen dioxide and personal exposures impacted by various exposure factors for heating (r=0.44) or non-heating seasons (r=0.34) were observed, indicating that use of ambient-based monitoring as a surrogate of personal exposure might result in sizeable exposure misclassification.

Collaboration


Dive into the Carry Croghan's collaboration.

Top Co-Authors

Avatar

Alan Vette

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar

Ron Williams

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carvin Stevens

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Marsha K. Morgan

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge