Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marsha K. Morgan is active.

Publication


Featured researches published by Marsha K. Morgan.


Journal of Exposure Science and Environmental Epidemiology | 2005

Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments

Marsha K. Morgan; Linda Sheldon; Carry Croghan; Paul A. Jones; Gary L Robertson; Jane C Chuang; Nancy K. Wilson; Christopher Lyu

As part of the Childrens Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) study, we investigated the exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol (TCP) in their everyday environments. During this study, the participants were still able to purchase and apply chlorpyrifos at their homes or day care centers. Participants were recruited randomly from 129 homes and 13 day care centers in six North Carolina counties. Monitoring was performed over a 48-h period at the childrens homes and/or day care centers. Samples that were collected included duplicate plate, indoor and outdoor air, urine, indoor floor dust, play area soil, transferable residues (PUF roller), and surface wipes (hand, food preparation, and hard floor). The samples were extracted and analyzed by gas chromatography/mass spectrometry. Chlorpyrifos was detected in 100% of the indoor air and indoor floor dust samples from homes and day care centers. TCP was detected at homes and day care centers in 100% of the indoor floor dust and hard floor surface wipe, in >97% of the solid food, and in >95% of the indoor air samples. Generally, median levels of chlorpyrifos were higher than those of TCP in all media, except for solid food samples. For these samples, the median TCP concentrations were 12 and 29 times higher than the chlorpyrifos concentrations at homes and day care centers, respectively. The median urinary TCP concentration for the preschool children was 5.3u2009ng/ml and the maximum value was 104u2009ng/ml. The median potential aggregate absorbed dose (ng/kg/day) of chlorpyrifos for these preschool children was estimated to be 3u2009ng/kg/day. The primary route of exposure to chlorpyrifos was through dietary intake, followed by inhalation. The median potential aggregate absorbed dose of TCP for these children was estimated to be 38u2009ng/kg/day, and dietary intake was the primary route of exposure. The median excreted amount of urinary TCP for these children was estimated to be 117u2009ng/kg/day. A full regression model of the relationships among chlorpyrifos and TCP for the children in the home group explained 23% of the variability of the urinary TCP concentrations by the three routes of exposure (inhalation, ingestion, dermal absorption) to chlorpyrifos and TCP. However, a final reduced model via step-wise regression retained only chlorpyrifos through the inhalation route and explained 22% of the variability of TCP in the childrens urine. The estimated potential aggregate absorbed doses of chlorpyrifos through the inhalation route were low (median value, 0.8u2009ng/kg/day) and could not explain most of the excreted amounts of urinary TCP. This suggested that there were other possible sources and pathways of exposure that contributed to the estimated potential aggregate absorbed doses of these children to chlorpyrifos and TCP. One possible pathway of exposure that was not accounted for fully is through the childrens potential contacts with contaminated surfaces at homes and day care centers. In addition, other pesticides such as chlorpyrifos-methyl may have also contributed to the levels of TCP in the urine. Future studies should include additional surface measurements in their estimation of potential absorbed doses of preschool children to environmental pollutants. In conclusion, the results showed that the preschool children were exposed to chlorpyrifos and TCP from several sources, through several pathways and routes.


International Journal of Environmental Research and Public Health | 2012

Children’s Exposures to Pyrethroid Insecticides at Home: A Review of Data Collected in Published Exposure Measurement Studies Conducted in the United States

Marsha K. Morgan

Pyrethroid insecticides are frequently used to control insects in residential and agriculture settings in the United States and worldwide. As a result, children can be potentially exposed to pyrethroid residues in food and at home. This review summarizes data reported in 15 published articles from observational exposure measurement studies conducted from 1999 to present that examined children’s (5 months to 17 years of age) exposures to pyrethroids in media including floor wipes, floor dust, food, air, and/or urine collected at homes in the United States. At least seven different pyrethroids were detected in wipe, dust, solid food, and indoor air samples. Permethrin was the most frequently detected (>50%) pyrethroid in these media, followed by cypermethrin (wipes, dust, and food). 3-phenoxybenzoic acid (3-PBA), a urinary metabolite of several pyrethroids, was the most frequently (≥67%) detected pyrethroid biomarker. Results across studies indicate that these children were likely exposed to several pyrethroids, but primarily to permethrin and cypermethrin, from several sources including food, dust, and/or on surfaces at residences. Dietary ingestion followed by nondietary ingestion were the dominate exposure routes for these children, except in homes with frequent pesticide applications (dermal followed by dietary ingestion). Urinary 3-PBA concentration data confirm that the majority of the children sampled were exposed to one or more pyrethroids.


Journal of Exposure Science and Environmental Epidemiology | 2004

Design and sampling methodology for a large study of preschool children's aggregate exposures to persistent organic pollutants in their everyday environments.

Nancy K. Wilson; Jane C Chuang; Ronaldo Iachan; Christopher Lyu; Sydney M. Gordon; Marsha K. Morgan; Halûk Özkaynak; Linda Sheldon

Young children, because of their immaturity and their rapid development compared to adults, are considered to be more susceptible to the health effects of environmental pollutants. They are also more likely to be exposed to these pollutants, because of their continual exploration of their environments with all their senses. Although there has been increased emphasis in recent years on exposure research aimed at this specific susceptible population, there are still large gaps in the available data, especially in the area of chronic, low-level exposures of children in their home and school environments. A research program on preschool childrens exposures was established in 1996 at the USEPA National Exposure Research Laboratory. The emphasis of this program is on childrens aggregate exposures to common contaminants in their everyday environments, from multiple media, through all routes of exposure. The current research project, “Childrens Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants,” (CTEPP), is a pilot-scale study of the exposures of 257 children, ages 1½–5 years, and their primary adult caregivers to contaminants in their everyday surroundings. The contaminants of interest include several pesticides, phenols, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and phthalate esters. Field recruitment and data collection began in February 2000 in North Carolina and were completed in November 2001 in Ohio. This paper describes the design strategy, survey sampling, recruiting, and field methods for the CTEPP study.


Environmental Science & Technology | 2011

Assessing the Quantitative Relationships between Preschool Children’s Exposures to Bisphenol A by Route and Urinary Biomonitoring

Marsha K. Morgan; Paul A. Jones; Antonia M. Calafat; Xiaoyun Ye; Carry Croghan; Jane C Chuang; Nancy K. Wilson; Matthew Scott Clifton; Zaida Figueroa; Linda S. Sheldon

Limited published information exists on young childrens exposures to bisphenol A (BPA) in the United States using urinary biomonitoring. In a previous project, we quantified the aggregate exposures of 257 preschool children to BPA in environmental and personal media over 48-h periods in 2000-2001 at homes and daycares in North Carolina and Ohio. In the present study for 81 Ohio preschool children ages 23-64 months, we quantified the childrens urinary total BPA (free and conjugated) concentrations over these same 48-h periods in 2001. Then, we examined the quantitative relationships between the childrens intakes doses of BPA through the dietary ingestion, nondietary ingestion, and inhalation routes and their excreted amounts of urinary BPA. BPA was detected in 100% of the urine samples. The estimated median intake doses of BPA for these 81 children were 109 ng/kg/day (dietary ingestion), 0.06 ng/kg/day (nondietary ingestion), and 0.27 ng/kg/day (inhalation); their estimated median excreted amount of urinary BPA was 114 ng/kg/day. Our multivariable regression model showed that dietary intake of BPA (p = 0.04) and creatinine concentration (p = 0.004) were significant predictors of urinary BPA excretion, collectively explaining 17% of the variability in excretion. Dietary ingestion of BPA accounted for >95% of the childrens excreted amounts of urinary BPA.


International Journal of Environmental Research and Public Health | 2011

Review of Pesticide Urinary Biomarker Measurements from Selected US EPA Children’s Observational Exposure Studies

Peter P. Egeghy; Elaine A. Cohen Hubal; Nicolle S. Tulve; Lisa Jo Melnyk; Marsha K. Morgan; Roy C. Fortmann; Linda Sheldon

Children are exposed to a wide variety of pesticides originating from both outdoor and indoor sources. Several studies were conducted or funded by the EPA over the past decade to investigate children’s exposure to organophosphate and pyrethroid pesticides and the factors that impact their exposures. Urinary metabolite concentration measurements from these studies are consolidated here to identify trends, spatial and temporal patterns, and areas where further research is required. Namely, concentrations of the metabolites of chlorpyrifos (3,5,6-trichloro-2-pyridinol or TCPy), diazinon (2-isopropyl-6-methyl-4-pyrimidinol or IMP), and permethrin (3-phenoxybenzoic acid or 3-PBA) are presented. Information on the kinetic parameters describing absorption and elimination in humans is also presented to aid in interpretation. Metabolite concentrations varied more dramatically across studies for 3-PBA and IMP than for TCPy, with TCPy concentrations about an order of magnitude higher than the 3-PBA concentrations. Temporal variability was high for all metabolites with urinary 3-PBA concentrations slightly more consistent over time than the TCPy concentrations. Urinary biomarker levels provided only limited evidence of applications. The observed relationships between urinary metabolite levels and estimates of pesticide intake may be affected by differences in the contribution of each exposure route to total intake, which may vary with exposure intensity and across individuals.


Journal of Exposure Science and Environmental Epidemiology | 2012

Population variability of phthalate metabolites and bisphenol A concentrations in spot urine samples versus 24- or 48-h collections.

Krista L.Y. Christensen; Matthew Lorber; Holger M. Koch; Marike Kolossa-Gehring; Marsha K. Morgan

Human exposure to phthalates and bisphenol A (BPA) can be assessed through urinary biomonitoring, but methods to infer daily intakes assume that spot sample concentrations are comparable to daily average concentrations. We evaluate this assumption using human biomonitoring data from Germany and the United States (US). The German data comprised three regional studies with spot samples and one with full-day samples analyzed for phthalate metabolites. The US data included: a study on DEHP metabolites and BPA involving eight persons supplying all urine voids (from which 24-h samples were constructed) for seven consecutive days; NHANES spot sample data on DEHP metabolites and BPA; and a regional study of children with 48-h samples analyzed for BPA. In the German data, measures of central tendency differed, but spot and 24-h samples showed generally comparable variance including 95th percentiles and maxima equidistant from central tendency measures. In contrast, the US adult data from the eight-person study showed similar central tendencies for phthalate metabolites and BPA, but generally greater variability for the spot samples, including higher 95th percentiles and maxima. When comparing childrens BPA concentrations in NHANES spot and 48-h samples, distributions showed similar central tendency and variability. Overall, spot urinary concentrations of DEHP metabolites and BPA have variability roughly comparable with corresponding 24-h average concentrations obtained from a comparable population, suggesting that spot samples can be used to characterize population distributions of intakes. However, the analysis also suggests that caution should be exercised when interpreting the high end of spot sample data sets.


Journal of Exposure Science and Environmental Epidemiology | 2008

Adult and children's exposure to 2,4-D from multiple sources and pathways

Marsha K. Morgan; Linda Sheldon; Kent Thomas; Peter P. Egeghy; Carry Croghan; Paul A. Jones; Jane C Chuang; Nancy K. Wilson

In this study, we investigated the 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide exposures of 135 preschool-aged children and their adult caregivers at 135 homes in North Carolina (NC) and Ohio (OH). Participants were randomly recruited from six NC and six OH counties. Monitoring was performed over a 48-h period at the participants’ homes. Environmental samples included soil, outdoor air, indoor air, and carpet dust. Personal samples collected by the adult caregivers concerning themselves and their children consisted of solid food, liquid food, hand wipe, and spot urine samples. All samples were analyzed for 2,4-D (free acid form) by gas chromatography/mass spectrometry. 2,4-D was detected in all types of environmental samples but most often in carpet dust samples, with detection frequencies of 83% and 98% in NC and OH, respectively. The median level of 2,4-D in the carpet dust samples was about three times higher in OH homes compared to NC homes (156 vs. 47.5u2009ng/g, P<0.0002). For personal samples, 2,4-D was more frequently detected in the hand wipe samples from OH participants (>48%) than from NC participants (<9%). Hand wipe levels at the 95th percentile were about five times higher for OH children (0.1u2009ng/cm2) and adults (0.03u2009ng/cm2) than for the NC children (0.02u2009ng/cm2) and adults (<0.005u2009ng/cm2). 2,4-D was detected in more than 85% of the child and adult urine samples in both states. The median urinary 2,4-D concentration was more than twice as high for OH children compared to NC children (1.2 vs. 0.5u2009ng/ml, P<0.0001); however, the median concentration was identical at 0.7u2009ng/ml for both NC and OH adults. The intraclass correlation coefficient of reliability for an individuals urinary 2,4-D measurements, estimated from the unadjusted (0.31–0.62) and specific gravity-adjusted (0.37–0.73) values, were somewhat low for each group in this study. The variability in urinary 2,4-D measurements over the 48-h period for both children and adults in NC and OH suggests that several spot samples were needed to adequately assess these participants’ exposures to 2,4-D in residential settings. Results from this study showed that children and their adult caregivers in NC and OH were likely exposed to 2,4-D through several pathways at their homes. In addition, our findings suggest that the OH children might have been exposed to higher levels of 2,4-D through the dermal and nondietary routes of exposure than the NC children and the NC and OH adults.


Journal of Exposure Science and Environmental Epidemiology | 2011

The reliability of using urinary biomarkers to estimate children's exposures to chlorpyrifos and diazinon.

Marsha K. Morgan; Linda Sheldon; Paul A. Jones; Carry Croghan; Jane C Chuang; Nancy K. Wilson

A few studies have reported concurrent levels of chlorpyrifos (CPF) and diazinon (DZN) and their environmentally occurring metabolites, 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-6-methyl-4-pyrimidinol (IMP), in food and in environmental media. This information raises questions regarding the reliability of using these same metabolites, TCP and IMP, as urinary biomarkers to quantitatively assess the everyday exposures of children to CPF and DZN, respectively. In this study, we quantified the distributions of CPF, DZN, TCP, and IMP in several environmental and personal media at the homes and day-care centers of 127 Ohio preschool children and identified the important sources and routes of their exposures. The children were exposed to concurrent levels of these four chemicals from several sources and routes at these locations. DZN and IMP were both detected above 50% in the air and dust samples. CPF and TCP were both detected in greater than 50% of the air, dust (solid), food, and hand wipe samples. TCP was detected in 100% of the urine samples. Results from our regression models showed that creatinine levels (<0.001), and dietary (P<0.001) and inhalation (P<0.10) doses of TCP were each significant predictors of urinary TCP, collectively explaining 27% of the urinary TCP variability. This information suggests that measurement of urinary TCP did not reliably allow quantitative estimation of the childrens everyday environmental exposures to CPF.


Environmental Health Perspectives | 2009

Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents.

Lesa L. Aylward; Marsha K. Morgan; Tye E. Arbuckle; Dana B. Barr; Carol J. Burns; Bruce H. Alexander; Sean M. Hays

Background Several extensive studies of exposure to 2,4-dichlorophenoxyacetic acid (2,4-D) using urinary concentrations in samples from the general population, farm applicators, and farm family members are now available. Reference doses (RfDs) exist for 2,4-D, and Biomonitoring Equivalents (BEs; concentrations in urine or plasma that are consistent with those RfDs) for 2,4-D have recently been derived and published. Objective We reviewed the available biomonitoring data for 2,4-D from the United States and Canada and compared them with BE values to draw conclusions regarding the margin of safety for 2,4-D exposures within each population group. Data sources Data on urinary 2,4-D excretion in general and target populations from recent published studies are tabulated and the derivation of BE values for 2,4-D summarized. Data synthesis The biomonitoring data indicate margins of safety (ratio of BE value to biomarker concentration) of approximately 200 at the central tendency and 50 at the extremes in the general population. Median exposures for applicators and their family members during periods of use appear to be well within acute exposure guidance values. Conclusions Biomonitoring data from these studies indicate that current exposures to 2,4-D are below applicable exposure guidance values. This review demonstrates the value of biomonitoring data in assessing population exposures in the context of existing risk assessments using the BE approach. Risk managers can use this approach to integrate the available biomonitoring data into an overall assessment of current risk management practices for 2,4-D.


International Journal of Environmental Research and Public Health | 2014

Exposures of 129 Preschool Children to Organochlorines, Organophosphates, Pyrethroids, and Acid Herbicides at Their Homes and Daycares in North Carolina

Marsha K. Morgan; Nancy K. Wilson; Jane C. Chuang

Few data exist on the concurrent exposures of young children to past-use and current-use pesticides in their everyday environments. In this further analysis of study data, we quantified the potential exposures and intake doses of 129 preschool children, ages 20 to 66 months, to 16 pesticides (eight organochlorines, two organophosphates, three pyrethroids, and three acid herbicides). Environmental samples (soil, dust, outdoor air, and indoor air) and personal samples (hand wipes, solid food, and liquid food) were collected at 129 homes and 13 daycare centers in six counties in North Carolina between 2000 and 2001. α-Chlordane, γ-chlordane, heptachlor, chlorpyrifos, diazinon, cis-permethrin, trans-permethrin, and 2,4-dichlorophenoxyacetic acid (2,4-D) were detected ≥50% in two or more media in both settings. Of these pesticides, the children’s estimated median potential intake doses through dietary ingestion, nondietary ingestion, and inhalation routes were the highest for 2,4-D and cis/trans-permethrin (both 4.84 ng/kg/day), cis/trans-permethrin (2.39 ng/kg/day), and heptachlor (1.71 ng/kg/day), respectively. The children’s estimated median potential aggregate intake doses by all three routes were quantifiable for chlorpyrifos (4.6 ng/kg/day), cis/trans-permethrin (12.5 ng/kg/day), and 2,4-D (4.9 ng/kg/day). In conclusion, these children were likely exposed daily to several pesticides from several sources and routes at their homes and daycares.

Collaboration


Dive into the Marsha K. Morgan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane C Chuang

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carry Croghan

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

James M. Starr

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jon R. Sobus

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Christopher Lyu

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Jones

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge