Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carsten Kuenne is active.

Publication


Featured researches published by Carsten Kuenne.


Infection and Immunity | 2006

Intracellular Gene Expression Profile of Listeria monocytogenes

Som S. Chatterjee; Hamid Hossain; Sonja Otten; Carsten Kuenne; Katja Kuchmina; Silke Machata; Eugen Domann; Trinad Chakraborty; Torsten Hain

ABSTRACT Listeria monocytogenes is a gram-positive, food-borne microorganism responsible for invasive infections with a high overall mortality. L. monocytogenes is among the very few microorganisms that can induce uptake into the host cell and subsequently enter the host cell cytosol by breaching the vacuolar membrane. We infected the murine macrophage cell line P388D1 with L. monocytogenes strain EGD-e and examined the gene expression profile of L. monocytogenes inside the vacuolar and cytosolic environments of the host cell by using whole-genome microarray and mutant analyses. We found that ∼17% of the total genome was mobilized to enable adaptation for intracellular growth. Intracellularly expressed genes showed responses typical of glucose limitation within bacteria, with a decrease in the amount of mRNA encoding enzymes in the central metabolism and a temporal induction of genes involved in alternative-carbon-source utilization pathways and their regulation. Adaptive intracellular gene expression involved genes that are associated with virulence, the general stress response, cell division, and changes in cell wall structure and included many genes with unknown functions. A total of 41 genes were species specific, being absent from the genome of the nonpathogenic Listeria innocua CLIP 11262 strain. We also detected 25 genes that were strain specific, i.e., absent from the genome of the previously sequenced L. monocytogenes F2365 serotype 4b strain, suggesting heterogeneity in the gene pool required for intracellular survival of L. monocytogenes in host cells. Overall, our study provides crucial insights into the strategy of intracellular survival and measures taken by L. monocytogenes to escape the host cell responses.


BMC Microbiology | 2008

Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e σB regulon

Torsten Hain; Hamid Hossain; Som S. Chatterjee; Silke Machata; Ute Volk; Sandra Wagner; Benedikt Brors; Stefan A. Haas; Carsten Kuenne; André Billion; Sonja Otten; Jan Pané-Farré; Susanne Engelmann; Trinad Chakraborty

BackgroundThe opportunistic food-borne gram-positive pathogen Listeria monocytogenes can exist as a free-living microorganism in the environment and grow in the cytoplasm of vertebrate and invertebrate cells following infection. The general stress response, controlled by the alternative sigma factor, σB, has an important role for bacterial survival both in the environment and during infection. We used quantitative real-time PCR analysis and immuno-blot analysis to examine σB expression during growth of L. monocytogenes EGD-e. Whole genome-based transcriptional profiling was used to identify σB-dependent genes at different growth phases.ResultsWe detected 105 σB-positively regulated genes and 111 genes which appeared to be under negative control of σB and validated 36 σB-positively regulated genes in vivo using a reporter gene fusion system.ConclusionGenes comprising the σB regulon encode solute transporters, novel cell-wall proteins, universal stress proteins, transcriptional regulators and include those involved in osmoregulation, carbon metabolism, ribosome- and envelope-function, as well as virulence and niche-specific survival genes such as those involved in bile resistance and exclusion. Ten of the σB-positively regulated genes of L. monocytogenes are absent in L. innocua. A total of 75 σB-positively regulated listerial genes had homologs in B. subtilis, but only 33 have been previously described as being σB-regulated in B. subtilis even though both species share a highly conserved σB-dependent consensus sequence. A low overlap of genes may reflects adaptation of these bacteria to their respective environmental conditions.


Nucleic Acids Research | 2011

The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages

Mobarak Abu Mraheil; André Billion; Walid Mohamed; Krishnendu Mukherjee; Carsten Kuenne; Jordan Pischimarov; Christian Krawitz; Julia Retey; Thomas Hartsch; Trinad Chakraborty; Torsten Hain

Small non-coding RNAs (sRNAs) are widespread effectors of post-transcriptional gene regulation in bacteria. Currently extensive information exists on the sRNAs of Listeria monocytogenes expressed during growth in extracellular environments. We used deep sequencing of cDNAs obtained from fractioned RNA (<500 nt) isolated from extracellularly growing bacteria and from L. monocytogenes infected macrophages to catalog the sRNA repertoire during intracellular bacterial growth. Here, we report on the discovery of 150 putative regulatory RNAs of which 71 have not been previously described. A total of 29 regulatory RNAs, including small non-coding antisense RNAs, are specifically expressed intracellularly. We validated highly expressed sRNAs by northern blotting and demonstrated by the construction and characterization of isogenic mutants of rli31, rli33-1 and rli50* for intracellular expressed sRNA candidates, that their expression is required for efficient growth of bacteria in macrophages. All three mutants were attenuated when assessed for growth in mouse and insect models of infection. Comparative genomic analysis revealed the presence of lineage specific sRNA candidates and the absence of sRNA loci in genomes of naturally occurring infection-attenuated bacteria, with additional loss in non-pathogenic listerial genomes. Our analyses reveal extensive sRNA expression as an important feature of bacterial regulation during intracellular growth.


BMC Genomics | 2013

Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome

Carsten Kuenne; André Billion; Mobarak Abu Mraheil; Axel Strittmatter; Rolf Daniel; Alexander Goesmann; Sukhadeo B. Barbuddhe; Torsten Hain; Trinad Chakraborty

BackgroundListeria monocytogenes is an important food-borne pathogen and model organism for host-pathogen interaction, thus representing an invaluable target considering research on the forces governing the evolution of such microbes. The diversity of this species has not been exhaustively explored yet, as previous efforts have focused on analyses of serotypes primarily implicated in human listeriosis. We conducted complete genome sequencing of 11 strains employing 454 GS FLX technology, thereby achieving full coverage of all serotypes including the first complete strains of serotypes 1/2b, 3c, 3b, 4c, 4d, and 4e. These were comparatively analyzed in conjunction with publicly available data and assessed for pathogenicity in the Galleria mellonella insect model.ResultsThe species pan-genome of L. monocytogenes is highly stable but open, suggesting an ability to adapt to new niches by generating or including new genetic information. The majority of gene-scale differences represented by the accessory genome resulted from nine hyper variable hotspots, a similar number of different prophages, three transposons (Tn916, Tn554, IS3-like), and two mobilizable islands. Only a subset of strains showed CRISPR/Cas bacteriophage resistance systems of different subtypes, suggesting a supplementary function in maintenance of chromosomal stability. Multiple phylogenetic branches of the genus Listeria imply long common histories of strains of each lineage as revealed by a SNP-based core genome tree highlighting the impact of small mutations for the evolution of species L. monocytogenes. Frequent loss or truncation of genes described to be vital for virulence or pathogenicity was confirmed as a recurring pattern, especially for strains belonging to lineages III and II. New candidate genes implicated in virulence function were predicted based on functional domains and phylogenetic distribution. A comparative analysis of small regulatory RNA candidates supports observations of a differential distribution of trans-encoded RNA, hinting at a diverse range of adaptations and regulatory impact.ConclusionsThis study determined commonly occurring hyper variable hotspots and mobile elements as primary effectors of quantitative gene-scale evolution of species L. monocytogenes, while gene decay and SNPs seem to represent major factors influencing long-term evolution. The discovery of common and disparately distributed genes considering lineages, serogroups, serotypes and strains of species L. monocytogenes will assist in diagnostic, phylogenetic and functional research, supported by the comparative genomic GECO-LisDB analysis server (http://bioinfo.mikrobio.med.uni-giessen.de/geco2lisdb).


BMC Genomics | 2012

Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes

Torsten Hain; Rohit Ghai; André Billion; Carsten Kuenne; Christiane Steinweg; Benjamin Izar; Walid Mohamed; Mobarak Abu Mraheil; Eugen Domann; Silke Schaffrath; Uwe Kärst; Alexander Goesmann; Sebastian Oehm; Alfred Pühler; Rainer Merkl; Sonja Vorwerk; Philippe Glaser; Patricia Garrido; Christophe Rusniok; Carmen Buchrieser; Werner Goebel; Trinad Chakraborty

BackgroundListeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99) and 4b (CLIP80459), and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L. monocytogenes. Lineage III, represented by the 4a L99 genome is known to contain strains less virulent for humans.ResultsThe genome analysis of the weakly pathogenic L99 serotype 4a provides extensive evidence of virulence gene decay, including loss of several important surface proteins. The 4b CLIP80459 genome, unlike the previously sequenced 4b F2365 genome harbours an intact inlB invasion gene. These lineage I strains are characterized by the lack of prophage genes, as they share only a single prophage locus with other L. monocytogenes genomes 1/2a EGD-e and 4a L99. Comparative transcriptome analysis during intracellular growth uncovered adaptive expression level differences in lineages I, II and III of Listeria, notable amongst which was a strong intracellular induction of flagellar genes in strain 4a L99 compared to the other lineages. Furthermore, extensive differences between strains are manifest at levels of metabolic flux control and phosphorylated sugar uptake. Intriguingly, prophage gene expression was found to be a hallmark of intracellular gene expression. Deletion mutants in the single shared prophage locus of lineage II strain EGD-e 1/2a, the lma operon, revealed severe attenuation of virulence in a murine infection model.ConclusionComparative genomics and transcriptome analysis of L. monocytogenes strains from three lineages implicate prophage genes in intracellular adaptation and indicate that gene loss and decay may have led to the emergence of attenuated lineages.


PLOS ONE | 2010

Comparative Analysis of Plasmids in the Genus Listeria

Carsten Kuenne; Sonja Voget; Jordan Pischimarov; Sebastian Oehm; Alexander Goesmann; Rolf Daniel; Torsten Hain; Trinad Chakraborty

Background We sequenced four plasmids of the genus Listeria, including two novel plasmids from L. monocytogenes serotype 1/2c and 7 strains as well as one from the species L. grayi. A comparative analysis in conjunction with 10 published Listeria plasmids revealed a common evolutionary background. Principal Findings All analysed plasmids share a common replicon-type related to theta-replicating plasmid pAMbeta1. Nonetheless plasmids could be broadly divided into two distinct groups based on replicon diversity and the genetic content of the respective plasmid groups. Listeria plasmids are characterized by the presence of a large number of diverse mobile genetic elements and a commonly occurring translesion DNA polymerase both of which have probably contributed to the evolution of these plasmids. We detected small non-coding RNAs on some plasmids that were homologous to those present on the chromosome of L. monocytogenes EGD-e. Multiple genes involved in heavy metal resistance (cadmium, copper, arsenite) as well as multidrug efflux (MDR, SMR, MATE) were detected on all listerial plasmids. These factors promote bacterial growth and survival in the environment and may have been acquired as a result of selective pressure due to the use of disinfectants in food processing environments. MDR efflux pumps have also recently been shown to promote transport of cyclic diadenosine monophosphate (c-di-AMP) as a secreted molecule able to trigger a cytosolic host immune response following infection. Conclusions The comparative analysis of 14 plasmids of genus Listeria implied the existence of a common ancestor. Ubiquitously-occurring MDR genes on plasmids and their role in listerial infection now deserve further attention.


PLOS ONE | 2011

Genome-Wide Identification of Small RNAs in the Opportunistic Pathogen Enterococcus faecalis V583

Kouki Shioya; Charlotte Michaux; Carsten Kuenne; Torsten Hain; Nicolas Verneuil; Aurélie Budin-Verneuil; Thomas Hartsch; Axel Hartke; Jean-Christophe Giard

Small RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the Gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5′ and 3′ RACE-PCR, and Northern blot analysis. Six sRNAs were specifically expressed at exponential phase, two sRNAs were observed at stationary phase, and three were detected during both phases. Searches of putative functions revealed that three of them (EFA0080_EFA0081 and EFB0062_EFB0063 on pTF1 and pTF2 plasmids, respectively, and EF0408_EF04092 located on the chromosome) are similar to antisense RNA involved in plasmid addiction modules. Moreover, EF1097_EF1098 shares strong homologies with tmRNA (bi-functional RNA acting as both a tRNA and an mRNA) and EF2205_EF2206 appears homologous to 4.5S RNA member of the Signal Recognition Particle (SRP) ribonucleoprotein complex. In addition, proteomic analysis of the ΔEF3314_EF3315 sRNA mutant suggests that it may be involved in the turnover of some abundant proteins. The expression patterns of these transcripts were evaluated by tiling array hybridizations performed with samples from cells grown under eleven different conditions some of which may be encountered during infection. Finally, distribution of these sRNAs among genome sequences of 54 E. faecalis strains was assessed. This is the first experimental genome-wide identification of sRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen.


Microbial Biotechnology | 2010

Comparative genome-wide analysis of small RNAs of major Gram-positive pathogens: from identification to application.

Mobarak Abu Mraheil; André Billion; Carsten Kuenne; Jordan Pischimarov; Bernd Kreikemeyer; Susanne Engelmann; Axel Hartke; Jean-Christophe Giard; Maja Rupnik; Sonja Vorwerk; Markus Beier; Julia Retey; Thomas Hartsch; Anette Jacob; Franz Cemic; Jürgen Hemberger; Trinad Chakraborty; Torsten Hain

In the recent years, the number of drug‐ and multi‐drug‐resistant microbial strains has increased rapidly. Therefore, the need to identify innovative approaches for development of novel anti‐infectives and new therapeutic targets is of high priority in global health care. The detection of small RNAs (sRNAs) in bacteria has attracted considerable attention as an emerging class of new gene expression regulators. Several experimental technologies to predict sRNA have been established for the Gram‐negative model organism Escherichia coli. In many respects, sRNA screens in this model system have set a blueprint for the global and functional identification of sRNAs for Gram‐positive microbes, but the functional role of sRNAs in colonization and pathogenicity for Listeria monocytogenes, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Clostridium difficile is almost completely unknown. Here, we report the current knowledge about the sRNAs of these socioeconomically relevant Gram‐positive pathogens, overview the state‐of‐the‐art high‐throughput sRNA screening methods and summarize bioinformatics approaches for genome‐wide sRNA identification and target prediction. Finally, we discuss the use of modified peptide nucleic acids (PNAs) as a novel tool to inactivate potential sRNA and their applications in rapid and specific detection of pathogenic bacteria.


Bioinformatics | 2007

GECO---linear visualization for comparative genomics

Carsten Kuenne; Rohit Ghai; Trinad Chakraborty; Torsten Hain

UNLABELLED In order to understand and interpret phylogenetic and functional relationships between multiple prokaryotic species, qualitative and quantitative data must be correlated and displayed. GECO allows linear visualization of multiple genomes using a client/server based approach by dynamically creating .png- or .pdf-formatted images. It is able to display ortholog relations calculated using BLASTCLUST by color coding ortholog representations. Irregularities on the genomic level can be identified by anomalous G/C composition. Thus, this software will enable researchers to detect horizontally transferred genes, pseudogenes and insertions/deletions in related microbial genomes. AVAILABILITY http://bioinfo.mikrobio.med.uni-giessen.de/geco2/GecoMainServlet


Journal of Bacteriology | 2010

Complete Genome Sequence of Listeria seeligeri, a Nonpathogenic Member of the Genus Listeria

Christiane Steinweg; Carsten Kuenne; André Billion; Mobarak Abu Mraheil; Eugen Domann; Rohit Ghai; Sukhadeo B. Barbuddhe; Uwe Kärst; Alexander Goesmann; Alfred Pühler; Bernd Weisshaar; Jürgen Wehland; Robert Lampidis; Jürgen Kreft; Werner Goebel; Trinad Chakraborty; Torsten Hain

We report the complete and annotated genome sequence of the nonpathogenic Listeria seeligeri SLCC3954 serovar 1/2b type strain harboring the smallest completely sequenced genome of the genus Listeria.

Collaboration


Dive into the Carsten Kuenne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Cencioni

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge