Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carter M. Suryadevara is active.

Publication


Featured researches published by Carter M. Suryadevara.


Clinical Cancer Research | 2014

EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss

John H. Sampson; Bryan D. Choi; Luis Sanchez-Perez; Carter M. Suryadevara; David Snyder; Catherine Flores; Robert J. Schmittling; Smita K. Nair; Elizabeth A. Reap; Pamela K. Norberg; James E. Herndon; Chien-Tsun Kuan; Richard A. Morgan; Steven A. Rosenberg; Laura A. Johnson

Purpose: Chimeric antigen receptor (CAR) transduced T cells represent a promising immune therapy that has been shown to successfully treat cancers in mice and humans. However, CARs targeting antigens expressed in both tumors and normal tissues have led to significant toxicity. Preclinical studies have been limited by the use of xenograft models that do not adequately recapitulate the immune system of a clinically relevant host. A constitutively activated mutant of the naturally occurring epidermal growth factor receptor (EGFRvIII) is antigenically identical in both human and mouse glioma, but is also completely absent from any normal tissues. Experimental Design: We developed a third-generation, EGFRvIII-specific murine CAR (mCAR), and performed tests to determine its efficacy in a fully immunocompetent mouse model of malignant glioma. Results: At elevated doses, infusion with EGFRvIII mCAR T cells led to cures in all mice with brain tumors. In addition, antitumor efficacy was found to be dependent on lymphodepletive host conditioning. Selective blockade with EGFRvIII soluble peptide significantly abrogated the activity of EGFRvIII mCAR T cells in vitro and in vivo, and may offer a novel strategy to enhance the safety profile for CAR-based therapy. Finally, mCAR-treated, cured mice were resistant to rechallenge with EGFRvIIINEG tumors, suggesting generation of host immunity against additional tumor antigens. Conclusion: All together, these data support that third-generation, EGFRvIII-specific mCARs are effective against gliomas in the brain and highlight the importance of syngeneic, immunocompetent models in the preclinical evaluation of tumor immunotherapies. Clin Cancer Res; 20(4); 972–84. ©2013 AACR.


Journal of Clinical Neuroscience | 2014

Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma

Bryan D. Choi; Carter M. Suryadevara; Patrick C. Gedeon; James E. Herndon; Luis Sanchez-Perez; Darell D. Bigner; John H. Sampson

Chimeric antigen receptors (CAR)-transduced T cells hold great promise in the treatment of malignant disease. Here, we demonstrate that intracerebral injection with a human, epidermal growth factor receptor variant III (EGFRvIII)-specific, third generation CAR successfully treats glioma in mice. Importantly, these results endorse clinical translation of this CAR in patients with EGFRvIII-expressing brain tumors.


Surgical Neurology International | 2015

Immunotherapy for malignant glioma

Carter M. Suryadevara; Terence Verla; Luis Sanchez-Perez; Elizabeth A. Reap; Bryan D. Choi; Peter E. Fecci; John H. Sampson

Malignant gliomas (MG) are the most common type of primary malignant brain tumor. Most patients diagnosed with glioblastoma (GBM), the most common and malignant glial tumor, die within 12–15 months. Moreover, conventional treatment, which includes surgery followed by radiation and chemotherapy, can be highly toxic by causing nonspecific damage to healthy brain and other tissues. The shortcomings of standard-of-care have thus created a stimulus for the development of novel therapies that can target central nervous system (CNS)-based tumors specifically and efficiently, while minimizing off-target collateral damage to normal brain. Immunotherapy represents an investigational avenue with the promise of meeting this need, already having demonstrated its potential against B-cell malignancy and solid tumors in clinical trials. T-cell engineering with tumor-specific chimeric antigen receptors (CARs) is one proven approach that aims to redirect autologous patient T-cells to sites of tumor. This platform has evolved dramatically over the past two decades to include an improved construct design, and these modern CARs have only recently been translated into the clinic for brain tumors. We review here emerging immunotherapeutic platforms for the treatment of MG, focusing on the development and application of a CAR-based strategy against GBM.


OncoImmunology | 2015

Are BiTEs the “missing link” in cancer therapy?

Carter M. Suryadevara; Patrick C. Gedeon; Luis Sanchez-Perez; Terence Verla; Christopher Alvarez-Breckenridge; Bryan D. Choi; Peter E. Fecci; John H. Sampson

Conventional treatment for cancer routinely includes surgical resection and some combination of chemotherapy and radiation. These approaches are frequently accompanied by unintended and highly toxic collateral damage to healthy tissues, which are offset by only marginal prognostic improvements in patients with advanced cancers. This unfortunate balance has driven the development of novel therapies that aim to target tumors both safely and efficiently. Over the past decade, mounting evidence has supported the therapeutic utility of T-cell-centered cancer immunotherapy, which, in its various iterations, has been shown capable of eliciting highly precise and robust antitumor responses both in animal models and human trials. The identification of tumor-specific targets has further fueled a growing interest in T-cell therapies given their potential to circumvent the non-specific nature of traditional treatments. Of the several strategies geared toward achieving T-cell recognition of tumor, bispecific antibodies (bsAbs) represent a novel class of biologics that have garnered enthusiasm in recent years due to their versatility, specificity, safety, cost, and ease of production. Bispecific T-cell Engagers (BiTEs) are a subclass of bsAbs that are specific for CD3 on one arm and a tumor antigen on the second. As such, BiTEs function by recruiting and activating polyclonal populations of T-cells at tumor sites, and do so without the need for co-stimulation or conventional MHC recognition. Blinatumomab, a well-characterized BiTE, has emerged as a promising recombinant bscCD19×CD3 construct that has demonstrated remarkable antitumor activity in patients with B-cell malignancies. This clinical success has resulted in the rapid extension of BiTE technology against a greater repertoire of tumor antigens and the recent US Food and Drug Administrations (FDA) accelerated approval of blinatumomab for the treatment of a rare form of acute lymphoblastic leukemia (ALL). In this review, we dissect the role of T-cell therapeutics in the new era of cancer immunotherapy, appraise the value of CAR T-cells in the context of solid tumors, and discuss why the BiTE platform may rescue several of the apparent deficits and shortcomings of competing immunotherapies to support its widespread clinical application.


Neuro-oncology | 2014

Epidermal growth factor receptor and variant III targeted immunotherapy

Kendra L. Congdon; Patrick C. Gedeon; Carter M. Suryadevara; Hillary G. Caruso; Laurence J.N. Cooper; Amy B. Heimberger; John H. Sampson

Immunotherapeutic approaches to cancer have shown remarkable promise. A critical barrier to successfully executing such immune-mediated interventions is the selection of safe yet immunogenic targets. As patient deaths have occurred when tumor-associated antigens shared by normal tissue have been targeted by strong cellular immunotherapeutic platforms, route of delivery, target selection and the immune-mediated approach undertaken must work together to maximize efficacy with safety. Selected tumor-specific targets can spare potential toxicity to normal tissue; however, they are far less common than tumor-associated antigens and may not be present on all patients. In the context of immunotherapy for high-grade glioma, 2 of the most prominently studied antigens are the tumor-associated epidermal growth factor receptor and its tumor-specific genetic deletion variant III. In this review, we will summarize the immune-mediated strategies employed against these targets as well as the caveats particular to these approaches.


Expert Opinion on Emerging Drugs | 2016

Emerging immunotherapies for glioblastoma.

Rupen Desai; Carter M. Suryadevara; Kristen A. Batich; Samuel Harrison Farber; Luis Sanchez-Perez; John H. Sampson

ABSTRACT Introduction: Immunotherapy for brain cancer has evolved dramatically over the past decade, owed in part to our improved understanding of how the immune system interacts with tumors residing within the central nervous system (CNS). Glioblastoma (GBM), the most common primary malignant brain tumor in adults, carries a poor prognosis (<15 months) and only few advances have been made since the FDA’s approval of temozolomide (TMZ) in 2005. Importantly, several immunotherapies have now entered patient trials based on promising preclinical data, and recent studies have shed light on how GBM employs a slew of immunosuppressive mechanisms that may be targeted for therapeutic gain. Altogether, accumulating evidence suggests immunotherapy may soon earn its keep as a mainstay of clinical management for GBM. Areas covered: Here, we review cancer vaccines, checkpoint inhibitors, adoptive T-cell immunotherapy, and oncolytic virotherapy. Expert opinion: Checkpoint blockade induces antitumor activity by preventing negative regulation of T-cell activation. This platform, however, depends on an existing frequency of tumor-reactive T cells. GBM tumors are exceptionally equipped to prevent this, occupying low levels of antigen expression and elaborate mechanisms of immunosuppression. Therefore, checkpoint blockade may be most effective when used in combination with a DC vaccine or adoptively transferred tumor-specific T cells generated ex vivo. Both approaches have been shown to induce endogenous immune responses against tumor antigens, providing a rationale for use with checkpoint blockade where both primary and secondary responses may be potentiated.


Cancer Research | 2018

Dendritic cells enhance polyfunctionality of adoptively transferred T cells which target cytomegalovirus in glioblastoma

Elizabeth A. Reap; Carter M. Suryadevara; Kristen A. Batich; Luis Sanchez-Perez; Gary E. Archer; Robert J. Schmittling; Pamela K. Norberg; James E. Herndon; Patrick Healy; Kendra L. Congdon; Patrick C. Gedeon; Olivia C. Campbell; Adam Swartz; Katherine A. Riccione; John S. Yi; Mohammed K. Hossain-Ibrahim; Anirudh Saraswathula; Smita K. Nair; Anastasie Dunn-Pirio; Taylor M. Broome; Kent J. Weinhold; Annick Desjardins; Gordana Vlahovic; Roger E. McLendon; Allan H. Friedman; Henry S. Friedman; Darell D. Bigner; Peter E. Fecci; Duane A. Mitchell; John H. Sampson

Median survival for glioblastoma (GBM) remains <15 months. Human cytomegalovirus (CMV) antigens have been identified in GBM but not normal brain, providing an unparalleled opportunity to subvert CMV antigens as tumor-specific immunotherapy targets. A recent trial in recurrent GBM patients demonstrated the potential clinical benefit of adoptive T-cell therapy (ATCT) of CMV phosphoprotein 65 (pp65)-specific T cells. However, ex vivo analyses from this study found no change in the capacity of CMV pp65-specific T cells to gain multiple effector functions or polyfunctionality, which has been associated with superior antitumor efficacy. Previous studies have shown that dendritic cells (DC) could further enhance tumor-specific CD8+ T-cell polyfunctionality in vivo when administered as a vaccine. Therefore, we hypothesized that vaccination with CMV pp65 RNA-loaded DCs would enhance the frequency of polyfunctional CMV pp65-specific CD8+ T cells after ATCT. Here, we report prospective results of a pilot trial in which 22 patients with newly diagnosed GBM were initially enrolled, of which 17 patients were randomized to receive CMV pp65-specific T cells with CMV-DC vaccination (CMV-ATCT-DC) or saline (CMV-ATCT-saline). Patients who received CMV-ATCT-DC vaccination experienced a significant increase in the overall frequencies of IFNγ+, TNFα+, and CCL3+ polyfunctional, CMV-specific CD8+ T cells. These increases in polyfunctional CMV-specific CD8+ T cells correlated (R = 0.7371, P = 0.0369) with overall survival, although we cannot conclude this was causally related. Our data implicate polyfunctional T-cell responses as a potential biomarker for effective antitumor immunotherapy and support a formal assessment of this combination approach in a larger randomized study.Significance: A randomized pilot trial in patients with GBM implicates polyfunctional T-cell responses as a biomarker for effective antitumor immunotherapy. Cancer Res; 78(1); 256-64. ©2017 AACR.


Current Opinion in Virology | 2015

Potentiating oncolytic viral therapy through an understanding of the initial immune responses to oncolytic viral infection.

Christopher Alvarez-Breckenridge; Bryan D. Choi; Carter M. Suryadevara; E. Antonio Chiocca

Despite the challenge of implementing oncolytic viral therapy into mainstream clinical use, the obstacles of early clinical trials have outlined numerous areas requiring additional investigation. In particular, the role of innate and adaptive immunity has received significant attention in this context. It is increasingly clear that a one-sided approach of either immune suppression or robust immune cell activation is not the answer for clinical success. Rather, recent studies are increasingly demonstrating the delicate balance between both anti-viral immune suppression and immune mediated tumor killing. In this review we focus on aspects of innate immune cell activation following oncolytic viral infection and how this response has the potential of bridging to the broader goal of viral mediated immunotherapy.


OncoImmunology | 2014

Leveraging chemotherapy-induced lymphopenia to potentiate cancer immunotherapy.

Luis Sanchez-Perez; Carter M. Suryadevara; Bryan D. Choi; Elizabeth A. Reap; John H. Sampson

First-line chemotherapy to combat primary malignant brain cancer is often accompanied by lymphopenic immunologic deficiency. Although counterintuitive, chemotherapy-induced lymphopenia can provide excellent host conditioning that may actually be leveraged to potentiate antitumor immunotherapy. We discuss here our preclinical and clinical experiences applying immunotherapy against glioblastoma, the most common and lethal primary malignant brain tumor, as well as the use of immunotherapeutics in the setting of standard-of-care temozolomide chemotherapy.


Journal of Visualized Experiments | 2015

Generation of CAR T Cells for Adoptive Therapy in the Context of Glioblastoma Standard of Care

Katherine A. Riccione; Carter M. Suryadevara; David Snyder; Xiuyu Cui; John H. Sampson; Luis Sanchez-Perez

Adoptive T cell immunotherapy offers a promising strategy for specifically targeting and eliminating malignant gliomas. T cells can be engineered ex vivo to express chimeric antigen receptors specific for glioma antigens (CAR T cells). The expansion and function of adoptively transferred CAR T cells can be potentiated by the lymphodepletive and tumoricidal effects of standard of care chemotherapy and radiotherapy. We describe a method for generating CAR T cells targeting EGFRvIII, a glioma-specific antigen, and evaluating their efficacy when combined with a murine model of glioblastoma standard of care. T cells are engineered by transduction with a retroviral vector containing the anti-EGFRvIII CAR gene. Tumor-bearing animals are subjected to host conditioning by a course of temozolomide and whole brain irradiation at dose regimens designed to model clinical standard of care. CAR T cells are then delivered intravenously to primed hosts. This method can be used to evaluate the antitumor efficacy of CAR T cells in the context of standard of care.

Collaboration


Dive into the Carter M. Suryadevara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge