Peter E. Fecci
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter E. Fecci.
Cancer Discovery | 2013
Esra A. Akbay; Shohei Koyama; Julian Carretero; Abigail Altabef; Jeremy H. Tchaicha; Camilla L. Christensen; Oliver R. Mikse; Andrew D. Cherniack; Ellen M. Beauchamp; Trevor J. Pugh; Matthew D. Wilkerson; Peter E. Fecci; Mohit Butaney; Jacob B. Reibel; Margaret Soucheray; Travis J. Cohoon; Pasi A. Jänne; Matthew Meyerson; D. Neil Hayes; Geoffrey I. Shapiro; Takeshi Shimamura; Lynette M. Sholl; Scott J. Rodig; Gordon J. Freeman; Peter S. Hammerman; Glenn Dranoff; Kwok-Kin Wong
UNLABELLED The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition. SIGNIFICANCE We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape.
Cancer Research | 2006
Peter E. Fecci; Duane Mitchell; John F. Whitesides; Weihua Xie; Allan H. Friedman; Gary E. Archer; James E. Herndon; Darell D. Bigner; Glenn Dranoff; John H. Sampson
Immunosuppression is frequently associated with malignancy and is particularly severe in patients with malignant glioma. Anergy and counterproductive shifts toward T(H)2 cytokine production are long-recognized T-cell defects in these patients whose etiology has remained elusive for >30 years. We show here that absolute counts of both CD4(+) T cells and CD4(+)CD25(+)FOXP3(+)CD45RO(+) T cells (T(regs)) are greatly diminished in patients with malignant glioma, but T(regs) frequently represent an increased fraction of the remaining CD4 compartment. This increased T(reg) fraction, despite reduced counts, correlates with and is sufficient to elicit the characteristic manifestations of impaired patient T-cell responsiveness in vitro. Furthermore, T(reg) removal eradicates T-cell proliferative defects and reverses T(H)2 cytokine shifts, allowing T cells from patients with malignant glioma to function in vitro at levels equivalent to those of normal, healthy controls. Such restored immune function may give license to physiologic antiglioma activity, as in vivo, T(reg) depletion proves permissive for spontaneous tumor rejection in a murine model of established intracranial glioma. These findings dramatically alter our understanding of depressed cellular immune function in patients with malignant glioma and advance a role for T(regs) in facilitating tumor immune evasion in the central nervous system.
Nature Communications | 2016
Shohei Koyama; Esra A. Akbay; Yvonne Y. Li; Grit S. Herter-Sprie; Kevin A. Buczkowski; William G. Richards; Leena Gandhi; Amanda J. Redig; Scott J. Rodig; Hajime Asahina; Robert E. Jones; Meghana M. Kulkarni; Mari Kuraguchi; Sangeetha Palakurthi; Peter E. Fecci; Bruce E. Johnson; Pasi A. Jänne; Jeffrey A. Engelman; Sidharta P. Gangadharan; Daniel B. Costa; Gordon J. Freeman; Raphael Bueno; F. Stephen Hodi; Glenn Dranoff; Kwok-Kin Wong; Peter S. Hammerman
Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade.
Clinical Cancer Research | 2007
Peter E. Fecci; Hidenobu Ochiai; Duane A. Mitchell; Peter M. Grossi; Alison E. Sweeney; Gary E. Archer; Thomas J. Cummings; James P. Allison; Darell D. Bigner; John H. Sampson
Purpose: Patients with malignant glioma suffer global compromise of their cellular immunity, characterized by dramatic reductions in CD4+ T cell numbers and function. We have previously shown that increased regulatory T cell (Treg) fractions in these patients explain T-cell functional deficits. Our murine glioma model recapitulates these findings. Here, we investigate the effects of systemic CTLA-4 blockade in this model. Experimental Design: A monoclonal antibody (9H10) to CTLA-4 was employed against well-established glioma. Survival and risks for experimental allergic encephalomyelitis were assessed, as were CD4+ T cell numbers and function in the peripheral blood, spleen, and cervical lymph nodes. The specific capacities for anti-CTLA-4 to modify the functions of regulatory versus CD4+CD25− responder T cells were evaluated. Results: CTLA-4 blockade confers long-term survival in 80% of treated mice, without eliciting experimental allergic encephalomyelitis. Changes to the CD4 compartment were reversed, as anti-CTLA-4 reestablishes normal CD4 counts and abrogates increases in CD4+CD25+Foxp3+GITR+ regulatory T cell fraction observed in tumor-bearing mice. CD4+ T-cell proliferative capacity is restored and the cervical lymph node antitumor response is enhanced. Treatment benefits are bestowed exclusively on the CD4+CD25− T cell population and not Tregs, as CD4+CD25− T cells from treated mice show improved proliferative responses and resistance to Treg-mediated suppression, whereas Tregs from the same mice remain anergic and exhibit no restriction of their suppressive capacity. Conclusions: CTLA-4 blockade is a rational means of reversing glioma-induced changes to the CD4 compartment and enhancing antitumor immunity. These benefits were attained through the conferment of resistance to Treg-mediated suppression, and not through direct effects on Tregs.
Clinical Cancer Research | 2006
Peter E. Fecci; Alison E. Sweeney; Peter M. Grossi; Smita K. Nair; Christopher A. Learn; Duane A. Mitchell; Xiuyu Cui; Thomas J. Cummings; Darell D. Bigner; Eli Gilboa; John H. Sampson
Purpose: Elevated proportions of regulatory T cells (Treg) are present in patients with a variety of cancers, including malignant glioma, yet recapitulative murine models are wanting. We therefore examined Tregs in mice bearing malignant glioma and evaluated anti-CD25 as an immunotherapeutic adjunct. Experimental Design: CD4+CD25+Foxp3+GITR+ Tregs were quantified in the peripheral blood, spleens, cervical lymph nodes, and bone marrow of mice bearing malignant glioma. The capacities for systemic anti-CD25 therapy to deplete Tregs, enhance lymphocyte function, and generate antiglioma CTL responses were assessed. Lastly, survival and experimental allergic encephalitis risks were evaluated when anti-CD25 was combined with a dendritic cell–based immunization targeting shared tumor and central nervous system antigens. Results: Similar to patients with malignant glioma, glioma-bearing mice show a CD4 lymphopenia. Additionally, CD4+CD25+Foxp3+GITR+ Tregs represent an increased fraction of the remaining peripheral blood CD4+ T cells, despite themselves being reduced in number. Similar trends are observed in cervical lymph node and spleen, but not in bone marrow. Systemic anti-CD25 administration hinders detection of CD25+ cells but fails to completely eliminate Tregs, reducing their number only moderately, yet eliminating their suppressive function. This elimination of Treg function permits enhanced lymphocyte proliferative and IFN-γ responses and up to 80% specific lysis of glioma cell targets in vitro. When combined with dendritic cell immunization, anti-CD25 elicits tumor rejection in 100% of challenged mice without precipitating experimental allergic encephalitis. Conclusions: Systemic anti-CD25 administration does not entirely eliminate Tregs but does prevent Treg function. This leads to safe enhancement of tumor immunity in a murine glioma model that recapitulates the tumor-induced changes to the CD4 and Treg compartments seen in patients with malignant glioma.
Immunological Reviews | 2008
Duane A. Mitchell; Peter E. Fecci; John H. Sampson
Summary: Despite aggressive multi‐modality therapy including surgery, radiation, and chemotherapy, the prognosis for patients with malignant primary brain tumors remains very poor. Moreover, the non‐specific nature of conventional therapy for brain tumors often results in incapacitating damage to surrounding normal brain and systemic tissues. Thus, there is an urgent need for the development of therapeutic strategies that precisely target tumor cells while minimizing collateral damage to neighboring eloquent cerebral cortex. The rationale for using the immune system to target brain tumors is based on the premise that the inherent specificity of immunologic reactivity could meet the clear need for more specific and precise therapy. The success of this modality is dependent on our ability to understand the mechanisms of immune regulation within the central nervous system (CNS), as well as counter the broad defects in host cell‐mediated immunity that malignant gliomas are known to elicit. Recent advances in our understanding of tumor‐induced and host‐mediated immunosuppressive mechanisms, the development of effective strategies to combat these suppressive effects, and a better understanding of how to deliver immunologic effector molecules more efficiently to CNS tumors have all facilitated significant progress toward the realization of true clinical benefit from immunotherapeutic treatment of malignant gliomas.
Journal of Immunotherapy | 2012
Pankaj K. Agarwalla; Zachary R. Barnard; Peter E. Fecci; Glenn Dranoff; William T. Curry
Malignant glioma is an incurable disease with a relatively short median survival. Several clinical trials have demonstrated that immunotherapy with vaccination is a safe and possibly effective way of prolonging survival. Antibody-based blockade of cytotoxic T-lymphocyte antigen 4 (CTLA-4) ligation on T lymphocytes is associated with enhanced antitumor immunity in animal models of cancer and in patients with advanced melanoma. We hypothesized that sequential therapy with granulocyte-macrophage–colony-stimulating factor (GM-CSF)–expressing whole–glioma-cell vaccination and CTLA-4 blockade is an effective strategy for treating established intracranial gliomas. GL261 glioma cells were injected into the right frontal lobes of syngeneic C57/BL6 mice. At days 3, 6, and 9 after tumor implantation, mice were treated with subcutaneous injection of irradiated GM-CSF–expressing GL261 cells. Mice were also treated with intraperitoneal injection of anti-CTLA-4 monoclonal antibodies (mAbs), either at days 3, 6, and 9 or days 12, 15, and 18. Animals were followed for survival. Splenocytes were harvested at day 22 for use in enzyme-linked immunosorbent spot assays. Early treatment of established intracranial gliomas with high-dose CTLA-4 blockade was associated with increased survival in GL261-bearing mice. Later treatment with anti-CTLA-4 monoclonal antibodies did not significantly improve survival compared with control-treated mice. Early vaccination followed by subsequent CTLA-4 blockade was associated with significantly improved survival versus either treatment alone and intensified tumor-specific immunity as measured by interferon-&ggr; enzyme-linked immunosorbent spot assay. Sequential immunotherapy with GM-CSF–expressing irradiated glioma cells and CTLA-4 blockade synergistically prolongs survival in mice bearing established intracranial gliomas.
Cancer Research | 2016
Shohei Koyama; Esra A. Akbay; Yvonne Y. Li; Amir R. Aref; Ferdinandos Skoulidis; Grit S. Herter-Sprie; Kevin A. Buczkowski; Yan Liu; Mark M. Awad; Warren Denning; Lixia Diao; Jing Wang; Edwin R. Parra-Cuentas; Ignacio I. Wistuba; Margaret Soucheray; Tran C. Thai; Hajime Asahina; Shunsuke Kitajima; Abigail Altabef; Jillian D. Cavanaugh; Kevin Rhee; Peng Gao; Haikuo Zhang; Peter E. Fecci; Takeshi Shimamura; Matthew D. Hellmann; John V. Heymach; F. Stephen Hodi; Gordon J. Freeman; David A. Barbie
STK11/LKB1 is among the most commonly inactivated tumor suppressors in non-small cell lung cancer (NSCLC), especially in tumors harboring KRAS mutations. Many oncogenes promote immune escape, undermining the effectiveness of immunotherapies, but it is unclear whether the inactivation of tumor suppressor genes, such as STK11/LKB1, exerts similar effects. In this study, we investigated the consequences of STK11/LKB1 loss on the immune microenvironment in a mouse model of KRAS-driven NSCLC. Genetic ablation of STK11/LKB1 resulted in accumulation of neutrophils with T-cell-suppressive effects, along with a corresponding increase in the expression of T-cell exhaustion markers and tumor-promoting cytokines. The number of tumor-infiltrating lymphocytes was also reduced in LKB1-deficient mouse and human tumors. Furthermore, STK11/LKB1-inactivating mutations were associated with reduced expression of PD-1 ligand PD-L1 in mouse and patient tumors as well as in tumor-derived cell lines. Consistent with these results, PD-1-targeting antibodies were ineffective against Lkb1-deficient tumors. In contrast, treating Lkb1-deficient mice with an IL6-neutralizing antibody or a neutrophil-depleting antibody yielded therapeutic benefits associated with reduced neutrophil accumulation and proinflammatory cytokine expression. Our findings illustrate how tumor suppressor mutations can modulate the immune milieu of the tumor microenvironment, and they offer specific implications for addressing STK11/LKB1-mutated tumors with PD-1-targeting antibody therapies.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Tooba A. Cheema; Hiroaki Wakimoto; Peter E. Fecci; Jianfang Ning; Toshihiko Kuroda; Deva S. Jeyaretna; Robert L. Martuza; Samuel D. Rabkin
Glioblastoma (World Health Organization grade IV) is an aggressive adult brain tumor that is inevitably fatal despite surgery, radiation, and chemotherapy. Treatment failures are attributed to combinations of cellular heterogeneity, including a subpopulation of often-resistant cancer stem cells, aberrant vasculature, and noteworthy immune suppression. Current preclinical models and treatment strategies do not incorporate or address all these features satisfactorily. Herein, we describe a murine glioblastoma stem cell (GSC) model that recapitulates tumor heterogeneity, invasiveness, vascularity, and immunosuppressive microenvironment in syngeneic immunocompetent mice and should prove useful for a range of therapeutic studies. Using this model, we tested a genetically engineered oncolytic herpes simplex virus that is armed with an immunomodulatory cytokine, interleukin 12 (G47∆-mIL12). G47Δ-mIL12 infects and replicates similarly to its unarmed oncolytic herpes simplex virus counterpart in mouse 005 GSCs in vitro, whereas in vivo, it significantly enhances survival in syngeneic mice bearing intracerebral 005 tumors. Mechanistically, G47∆-mIL12 targets not only GSCs but also increases IFN-γ release, inhibits angiogenesis, and reduces the number of regulatory T cells in the tumor. The increased efficacy is dependent upon T cells, but not natural killer cells. Taken together, our findings demonstrate that G47Δ-mIL12 provides a multifaceted approach to targeting GSCs, tumor microenvironment, and the immune system, with resultant therapeutic benefit in a stringent glioblastoma model.
Journal of Neuro-oncology | 2003
Peter E. Fecci; Duane A. Mitchell; Gary E. Archer; Michael A. Morse; H. Kim Lyerly; Darell D. Bigner; John H. Sampson
SummaryDespite advancements in therapeutic regimens, the prognosis remains poor for patients with malignant gliomas. Specificity has been an elusive goal for current modalities, but immunotherapy has emerged as a potential means of designing more tumor-specific treatments. Dendritic cells (DC) are the specialized antigen presenting cells of the immune system and have served now as a platform for therapeutic immunizations against such cancers as lymphoma, multiple myeloma, melanoma, prostate cancer, renal cell carcinoma, non-small cell lung carcinoma, colon cancer, and even malignant gliomas. DC-based immunizations offer a number of advantages over traditional immunotherapeutic approaches to brain tumors, approaches that have proved promising despite concerns over central nervous system immune privilege and glioma-mediated immunosuppression. The future success of clinical trials will depend on the optimization and standardizing of procedures for DC generation, loading, and administration.