Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick C. Gedeon is active.

Publication


Featured researches published by Patrick C. Gedeon.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma

Bryan D. Choi; Chien-Tsun Kuan; Mingqing Cai; Gary E. Archer; Duane A. Mitchell; Patrick C. Gedeon; Luis Sanchez-Perez; Ira Pastan; Darell D. Bigner; John H. Sampson

Bispecific antibodies (bscAbs), particularly those of the bispecific T-cell engager (BiTE) subclass, have been shown to effectively redirect T cells against cancer. Previous efforts to target antigens expressed in both tumors and normal tissues have produced significant toxicity, however. Moreover, like other large molecules, bscAbs may be restricted from entry into the “immunologically privileged” CNS. A tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, is a constitutively activated tyrosine kinase not found in normal tissues but frequently expressed in glioblastomas and many other neoplasms. Because it is localized solely to tumor tissue, EGFRvIII presents an ideal target for immunotherapy. Here we report the preclinical evaluation of an EGFRvIII-targeted BiTE, bscEGFRvIIIxCD3. Our results show that bscEGFRvIIIxCD3 activates T cells to mediate potent and antigen-specific lysis of EGFRvIII-expressing gliomas in vitro (P < 0.001) at exceedingly low concentrations (10 ng/mL) and effector-to-target ratios (2.5:1). Treatment with i.v. bscEGFRvIIIxCD3 yielded extended survival in mice with well-established intracerebral tumors (P < 0.05) and achieved durable complete cure at rates up to 75%. Antitumor efficacy was significantly abrogated on blockade of EGFRvIII binding, demonstrating the need for target antigen specificity both in vitro and in vivo. These results demonstrate that BiTEs can be used to elicit functional antitumor immunity in the CNS, and that peptide blockade of BiTE-mediated activity may greatly enhance the safety profile for antibody-redirected T-cell therapies. Finally, bscEGFRvIIIxCD3 represents a unique advancement in BiTE technology given its exquisite tumor specificity, which enables precise elimination of cancer without the risk of autoimmune toxicity.


Journal of Clinical Neuroscience | 2014

Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma

Bryan D. Choi; Carter M. Suryadevara; Patrick C. Gedeon; James E. Herndon; Luis Sanchez-Perez; Darell D. Bigner; John H. Sampson

Chimeric antigen receptors (CAR)-transduced T cells hold great promise in the treatment of malignant disease. Here, we demonstrate that intracerebral injection with a human, epidermal growth factor receptor variant III (EGFRvIII)-specific, third generation CAR successfully treats glioma in mice. Importantly, these results endorse clinical translation of this CAR in patients with EGFRvIII-expressing brain tumors.


Proteins | 2010

Molecular dynamics of leucine and dopamine transporter proteins in a model cell membrane lipid bilayer

Patrick C. Gedeon; Martín Indarte; Christopher K. Surratt; Jeffry D. Madura

The dopamine transporter (DAT) operates via facilitated diffusion, harnessing an inward Na+ gradient to drive dopamine from the extracellular synaptic cleft to the neuron interior. The DAT is relevant to central nervous system disorders such as Parkinson disease and attention‐deficit hyperactivity disorder and is the primary site of action for the abused psychostimulants cocaine and amphetamines. Crystallization of a DAT homolog, the bacterial leucine transporter LeuT, provided the first reliable 3‐D DAT template. Here, the LeuT crystal structure and the DAT molecular model have been combined with their respective substrates, leucine and dopamine, in lipid bilayer molecular dynamics simulations toward tracking substrate movement along the proteins substrate/ion permeation pathway. Specifically, movement of residue pairs that comprise the “external gate” was followed as a function of substrate presence. The transmembrane (TM) 1 arginine‐TM 10 aspartate strut formed less readily in DAT compared with LeuT, with or without substrate present. For LeuT but not DAT, the addition of substrate enhanced the chances of forming the TM 1‐10 bridge. Also, movement of the fourth extracellular loop EL‐4 in the presence of substrate was more pronounced for DAT, the EL‐4 unwinding to a degree. The overall similarity between the LeuT and DAT molecular dynamics simulations indicated that LeuT was a legitimate model to guide DAT structure‐function predictions. There were, nevertheless, differences significant enough to allow for DAT‐unique insights, which may include how cocaine, methylphenidate (Ritalin, NIDA Drug Supply, Rockville, MD), and other DAT blockers are not recognized as substrates even though they can access the primary substrate binding pocket. Proteins 2010.


Cancer immunology research | 2013

Human regulatory T cells kill tumor cells through granzyme-dependent cytotoxicity upon retargeting with a bispecific antibody

Bryan D. Choi; Patrick C. Gedeon; James E. Herndon; Gary E. Archer; Elizabeth A. Reap; Luis Sanchez-Perez; Duane A. Mitchell; Darell D. Bigner; John H. Sampson

Regulatory T cells play a central role in tumor escape from immune-mediated rejection. Using a bispecific antibody targeting the tumor-specific mutation of the EGF receptor, EGFRvIII, Choi and colleagues describe a new mechanism they identified by which regulatory T cells can be redirected to elicit potent antitumor activity. A major mechanism by which human regulatory T cells (Treg) have been shown to suppress and kill autologous immune cells is through the granzyme-perforin pathway. However, it is unknown whether Tregs also possess the capacity to kill tumor cells using similar mechanisms. Bispecific antibodies (bscAb) have emerged as a promising class of therapeutics that activate T cells against tumor antigens without the need for classical MHC-restricted T-cell receptor (TCR) recognition. Here, we show that a bscAb targeting the tumor-specific mutation of the EGF receptor, EGFRvIII, redirects human CD4+CD25+FoxP3+ Tregs to kill glioblastoma cells. This activity was significantly abrogated by inhibitors of the granzyme-perforin pathway. Notably, analyses of human primary glioblastoma also displayed diffused infiltration of granzyme-expressing FoxP3+ T cells. Together, these data suggest that despite their known suppressive functions, tumor-infiltrating Tregs possess potent cytotoxic mechanisms that can be co-opted for efficient tumor cell lysis. Cancer Immunol Res; 1(3); 163–7. ©2013 AACR.


OncoImmunology | 2013

Regulatory T cells are redirected to kill glioblastoma by an EGFRvIII-targeted bispecific antibody.

Bryan D. Choi; Patrick C. Gedeon; Luis Sanchez-Perez; Darell D. Bigner; John H. Sampson

Regulatory T cells (Tregs) play a central role in in tumor escape from immunosurveillance. We report that a bispecific T-cell engager (BiTE) targeting a mutated form of the epidermal growth factor receptor, i.e., EGFRvIII, potently redirects Tregs to kill glioblastoma through the granzyme-perforin pathway.


Biophysical Journal | 2012

LeuT Conformational Sampling Utilizing Accelerated Molecular Dynamics and Principal Component Analysis

James R. Thomas; Patrick C. Gedeon; Barry J. Grant; Jeffry D. Madura

Monoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations.


OncoImmunology | 2015

Are BiTEs the “missing link” in cancer therapy?

Carter M. Suryadevara; Patrick C. Gedeon; Luis Sanchez-Perez; Terence Verla; Christopher Alvarez-Breckenridge; Bryan D. Choi; Peter E. Fecci; John H. Sampson

Conventional treatment for cancer routinely includes surgical resection and some combination of chemotherapy and radiation. These approaches are frequently accompanied by unintended and highly toxic collateral damage to healthy tissues, which are offset by only marginal prognostic improvements in patients with advanced cancers. This unfortunate balance has driven the development of novel therapies that aim to target tumors both safely and efficiently. Over the past decade, mounting evidence has supported the therapeutic utility of T-cell-centered cancer immunotherapy, which, in its various iterations, has been shown capable of eliciting highly precise and robust antitumor responses both in animal models and human trials. The identification of tumor-specific targets has further fueled a growing interest in T-cell therapies given their potential to circumvent the non-specific nature of traditional treatments. Of the several strategies geared toward achieving T-cell recognition of tumor, bispecific antibodies (bsAbs) represent a novel class of biologics that have garnered enthusiasm in recent years due to their versatility, specificity, safety, cost, and ease of production. Bispecific T-cell Engagers (BiTEs) are a subclass of bsAbs that are specific for CD3 on one arm and a tumor antigen on the second. As such, BiTEs function by recruiting and activating polyclonal populations of T-cells at tumor sites, and do so without the need for co-stimulation or conventional MHC recognition. Blinatumomab, a well-characterized BiTE, has emerged as a promising recombinant bscCD19×CD3 construct that has demonstrated remarkable antitumor activity in patients with B-cell malignancies. This clinical success has resulted in the rapid extension of BiTE technology against a greater repertoire of tumor antigens and the recent US Food and Drug Administrations (FDA) accelerated approval of blinatumomab for the treatment of a rare form of acute lymphoblastic leukemia (ALL). In this review, we dissect the role of T-cell therapeutics in the new era of cancer immunotherapy, appraise the value of CAR T-cells in the context of solid tumors, and discuss why the BiTE platform may rescue several of the apparent deficits and shortcomings of competing immunotherapies to support its widespread clinical application.


Neuro-oncology | 2014

Epidermal growth factor receptor and variant III targeted immunotherapy

Kendra L. Congdon; Patrick C. Gedeon; Carter M. Suryadevara; Hillary G. Caruso; Laurence J.N. Cooper; Amy B. Heimberger; John H. Sampson

Immunotherapeutic approaches to cancer have shown remarkable promise. A critical barrier to successfully executing such immune-mediated interventions is the selection of safe yet immunogenic targets. As patient deaths have occurred when tumor-associated antigens shared by normal tissue have been targeted by strong cellular immunotherapeutic platforms, route of delivery, target selection and the immune-mediated approach undertaken must work together to maximize efficacy with safety. Selected tumor-specific targets can spare potential toxicity to normal tissue; however, they are far less common than tumor-associated antigens and may not be present on all patients. In the context of immunotherapy for high-grade glioma, 2 of the most prominently studied antigens are the tumor-associated epidermal growth factor receptor and its tumor-specific genetic deletion variant III. In this review, we will summarize the immune-mediated strategies employed against these targets as well as the caveats particular to these approaches.


Expert Review of Clinical Pharmacology | 2013

An EGFRvIII-targeted bispecific T-cell engager overcomes limitations of the standard of care for glioblastoma

Patrick C. Gedeon; Bryan D. Choi; Tiffany R. Hodges; Duane A. Mitchell; Darell D. Bigner; John H. Sampson

While advanced surgical techniques, radiation therapy and chemotherapeutic regimens provide a tangible benefit for patients with glioblastoma (GBM), the average survival from the time of diagnosis remains less than 15 months. Current therapy for GBM is limited by the nonspecific nature of treatment, prohibiting therapy that is aggressive and prolonged enough to eliminate all malignant cells. As an alternative, bispecific antibodies can redirect the immune system to eliminate malignant cells with exquisite potency and specificity. We have recently developed an EGF receptor variant III (EGFRvIII)-targeted bispecific antibody that redirects T cells to eliminate EGFRvIII-expressing GBM. The absolute tumor specificity of EGFRvIII and the lack of immunologic crossreactivity with healthy cells allow this therapeutic to overcome limitations associated with the nonspecific nature of the current standard of care for GBM. Evidence indicates that the molecule can exert therapeutically significant effects in the CNS following systemic administration. Additional advantages in terms of ease-of-production and off-the-shelf availability further the clinical utility of this class of therapeutics.


Cancer Research | 2018

Dendritic cells enhance polyfunctionality of adoptively transferred T cells which target cytomegalovirus in glioblastoma

Elizabeth A. Reap; Carter M. Suryadevara; Kristen A. Batich; Luis Sanchez-Perez; Gary E. Archer; Robert J. Schmittling; Pamela K. Norberg; James E. Herndon; Patrick Healy; Kendra L. Congdon; Patrick C. Gedeon; Olivia C. Campbell; Adam Swartz; Katherine A. Riccione; John S. Yi; Mohammed K. Hossain-Ibrahim; Anirudh Saraswathula; Smita K. Nair; Anastasie Dunn-Pirio; Taylor M. Broome; Kent J. Weinhold; Annick Desjardins; Gordana Vlahovic; Roger E. McLendon; Allan H. Friedman; Henry S. Friedman; Darell D. Bigner; Peter E. Fecci; Duane A. Mitchell; John H. Sampson

Median survival for glioblastoma (GBM) remains <15 months. Human cytomegalovirus (CMV) antigens have been identified in GBM but not normal brain, providing an unparalleled opportunity to subvert CMV antigens as tumor-specific immunotherapy targets. A recent trial in recurrent GBM patients demonstrated the potential clinical benefit of adoptive T-cell therapy (ATCT) of CMV phosphoprotein 65 (pp65)-specific T cells. However, ex vivo analyses from this study found no change in the capacity of CMV pp65-specific T cells to gain multiple effector functions or polyfunctionality, which has been associated with superior antitumor efficacy. Previous studies have shown that dendritic cells (DC) could further enhance tumor-specific CD8+ T-cell polyfunctionality in vivo when administered as a vaccine. Therefore, we hypothesized that vaccination with CMV pp65 RNA-loaded DCs would enhance the frequency of polyfunctional CMV pp65-specific CD8+ T cells after ATCT. Here, we report prospective results of a pilot trial in which 22 patients with newly diagnosed GBM were initially enrolled, of which 17 patients were randomized to receive CMV pp65-specific T cells with CMV-DC vaccination (CMV-ATCT-DC) or saline (CMV-ATCT-saline). Patients who received CMV-ATCT-DC vaccination experienced a significant increase in the overall frequencies of IFNγ+, TNFα+, and CCL3+ polyfunctional, CMV-specific CD8+ T cells. These increases in polyfunctional CMV-specific CD8+ T cells correlated (R = 0.7371, P = 0.0369) with overall survival, although we cannot conclude this was causally related. Our data implicate polyfunctional T-cell responses as a potential biomarker for effective antitumor immunotherapy and support a formal assessment of this combination approach in a larger randomized study.Significance: A randomized pilot trial in patients with GBM implicates polyfunctional T-cell responses as a biomarker for effective antitumor immunotherapy. Cancer Res; 78(1); 256-64. ©2017 AACR.

Collaboration


Dive into the Patrick C. Gedeon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge