Casper Larsen
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Casper Larsen.
Journal of The Optical Society of America B-optical Physics | 2012
Simon Toft Sørensen; Casper Larsen; Uffe Møller; Peter M. Moselund; Carsten L. Thomsen; Ole Bang
The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source.
Optics Express | 2011
Casper Larsen; Danny Noordegraaf; Peter M. W. Skovgaard; Kim P. Hansen; Kent Erik Mattsson; Ole Bang
We demonstrate supercontinuum generation in a PCF pumped by a gain-switched high-power continuous wave (CW) fiber laser. The pulses generated by gain-switching have a peak power of more than 700 W, a duration around 200 ns, and a repetition rate of 200 kHz giving a high average power of almost 30 W. By coupling such a pulse train into a commercial nonlinear photonic crystal fiber, a supercontinuum is generated with a spectrum spanning from 500 to 2250 nm, a total output power of 12 W, and an infrared flatness of 6 dB over a bandwidth of more than 1000 nm with a power density above 5 dBm/nm (3 mW/nm). This is considerably broader than when operating the same system under CW conditions. The presented approach is attractive due to the high power, power scalability, and reduced system complexity compared to picosecond-pumped supercontinuum sources.
Optics Express | 2012
Simon Toft Sørensen; Uffe Møller; Casper Larsen; Peter M. Moselund; Christian Jakobsen; Jeppe Johansen; Thomas Vestergaard Andersen; Carsten L. Thomsen; Ole Bang
We use an asymmetric 2 m draw-tower photonic crystal fiber taper to demonstrate that the taper profile needs careful optimisation if you want to develop a supercontinuum light source with as much power as possible in the blue edge of the spectrum. In particular we show, that for a given taper length, the downtapering should be as long as possible. We argue how this may be explained by the concept of group-acceleration mismatch (GAM) and we confirm the results using conventional symmetrical short tapers made on a taper station, which have varying downtapering lengths.
Optics Express | 2012
Simon Toft Sørensen; Casper Larsen; Uffe Møller; Peter M. Moselund; Carsten L. Thomsen; Ole Bang
The noise properties of a supercontinuum can be controlled by modulating the pump with a seed pulse. In this paper, we numerically investigate the influence of seeding with a partially phase coherent weak pulse or continuous wave. We demonstrate that the noise properties of the generated supercontinuum are highly sensitive to the degree of phase noise of the seed and that a nearly coherent seed pulse is needed to achieve a coherent pulse break-up and low noise supercontinuum. The specific maximum allowable linewidth of the seed laser is found to decrease with increasing pump power.
Optics Express | 2013
Casper Larsen; M. Giesberts; Sebastian Nyga; O. Fitzau; Bernd Jungbluth; Hans-Dieter Hoffmann; Ole Bang
Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted pulse energy is 20 μJ in a duration of 135 ns at 7 kHz. The bandwidth increases for a higher pump pulse energy and repetition rate, and this sets the limit of the output pulse energy. A single power amplifier is added to raise the peak power to the kW-level and the pulse energy to 230 μJ while keeping the bandwidth below 0.1 nm. This allows frequency doubling in a periodically poled lithium tantalate crystal with a reasonable conversion efficiency.
Optics Express | 2014
Casper Larsen; Kim P. Hansen; Kent Erik Mattsson; Ole Bang
Gain-switching is an alternative pulsing technique of fiber lasers, which is power scalable and has a low complexity. From a linear stability analysis of rate equations the relaxation oscillation period is derived and from it, the pulse duration is defined. Good agreement between the measured pulse duration and the theoretical prediction is found over a wide range of parameters. In particular we investigate the influence of an often present length of passive fiber in the cavity and show that it introduces a finite minimum in the achievable pulse duration. This minimum pulse duration is shown to occur at longer active fibers length with increased passive length of fiber in the cavity. The peak power is observed to depend linearly on the absorbed pump power and be independent of the passive fiber length. Given these conclusions, the pulse energy, duration, and peak power can be estimated with good precision.
Optics Letters | 2014
Simon Toft Sørensen; Casper Larsen; Christian Jakobsen; Carsten L. Thomsen; Ole Bang
Dispersion control with axially nonuniform photonic crystal fibers (PCFs) permits supercontinuum (SC) generation into the deep-blue from an ytterbium pump laser. In this Letter, we exploit the full degrees of freedom afforded by PCFs to fabricate a fiber with longitudinally increasing air-fill fraction and decreasing diameter directly on the draw-tower. We demonstrate SC generation extending down to 375 nm in one such monolithic fiber device that is single-mode at 1064 nm at the input end.
Proceedings of SPIE | 2012
Casper Larsen; Danny Noordegraaf; Kim P. Hansen; Kent Erik Mattsson; Ole Bang
Supercontinuum generation in photonics crystal fibers (PCFs) pumped by CW lasers yields high spectral power density and average power. However, such systems require very high pump power and long nonlinear fibers. By on/off modulating the pump diodes of the fiber laser, the relaxation oscillations of the laser can be exploited to enhance the broadening process. The physics behind the supercontinuum generation is investigated by sweeping the fiber length, the zero dispersion wavelength, and the fiber nonlinearity. We show that by applying gain-switching a high average output power of up to 30 W can be maintained and the spectral width can be improved by 90%. The zero dispersion wavelength should be close to but below the pump wavelength to achieve the most visible light. By increasing the nonlinearity the fiber length can be reduced from 100 m to 25 m and the efficiency of visible light generation is improved by more than 200%.
Proceedings of SPIE | 2013
Carsten L. Thomsen; Frederik Donbæk Nielsen; Jeppe Johansen; Christian Pedersen; Peter M. Moselund; Uffe Møller; Simon Toft Sørensen; Casper Larsen; Ole Bang
Commercially available supercontinuum sources continue to experience a strong growth in a wide range of industrial and scientific applications. In addition, there is a significant research effort focused on extending the wavelength coverage both towards UV and Mid-IR. Broadband sources covering these wavelength regions have received significant attention from potential users, as there is a wide array of applications for which there are few suitable alternative light sources – if any. Our developments in the field of Mid-IR supercontinuum sources have been based on radical approaches; such as soft glasses and novel pumping schemes, whereas shifting the spectrum further towards the UV has been based on sophisticated microstructure fiber designs. Here we present our latest developments in tailoring the power and spectral coverage of spatially coherent broadband supercontinuum sources.
Workshop on Specialty Optical Fibers and their Applications (2013), paper T3.4 | 2013
Thomas Tanggaard Alkeskjold; Marko Laurila; Christina B. Olausson; Johannes Weirich; Jens K. Lyngsø; Casper Larsen; Martin E. V. Pedersen; Danny Noordegraaf; Martin D. Maack
Large-mode-area PCF amplifiers are today being deployed in commercial laser systems. The technology has undergone a tremendous evolution on many industrial key performance parameters. In this talk, we will review some of this activity.