Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uffe Møller is active.

Publication


Featured researches published by Uffe Møller.


Optics Express | 2007

Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy

Peter Uhd Jepsen; Uffe Møller; Hannes Merbold

We give a detailed analysis of a general realization of reflection terahertz time-domain spectroscopy. The method is self-referenced and applicable at all incidence angles and for all polarizations of the incident terahertz radiation. Hence it is a general method for the determination of the dielectric properties of especially liquids in environments where transmission measurements are difficult. We investigate the dielectric properties in the 0.1-1.0 THz frequency range of liquids using reflection terahertz time-domain spectroscopy. We apply the technique for the determination of alcohol and sugar concentration of commercial alcoholic beverages and liquors. The special geometry of the experiment allows measurement on sparkling beverages.


Optics Express | 2015

Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber

Uffe Møller; Yi Yu; Irnis Kubat; Christian Rosenberg Petersen; Xin Gai; Laurent Brilland; David Méchin; Celine Caillaud; Johann Troles; Barry Luther-Davies; Ole Bang

A low-loss suspended core As(38)Se(62) fiber with core diameter of 4.5 μm and a zero-dispersion wavelength of 3.5 μm was used for mid-infrared supercontinuum generation. The dispersion of the fiber was measured from 2.9 to 4.2 μm and was in good correspondence with the calculated dispersion. An optical parametric amplifier delivering 320 fs pulses with a peak power of 14.8 kW at a repetition rate of 21 MHz was used to pump 18 cm of suspended core fiber at different wavelengths from 3.3 to 4.7 μm. By pumping at 4.4 μm with a peak power of 5.2 kW coupled to the fiber a supercontinuum spanning from 1.7 to 7.5 μm with an average output power of 15.6 mW and an average power >5.0 μm of 4.7 mW was obtained.


Optics Express | 2014

Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers.

Irnis Kubat; Christian Rosenberg Petersen; Uffe Møller; Angela B. Seddon; Trevor M. Benson; Laurent Brilland; David Méchin; Peter M. Moselund; Ole Bang

We theoretically demonstrate a novel approach for generating Mid-InfraRed SuperContinuum (MIR SC) by using concatenated fluoride and chalcogenide glass fibers pumped with a standard pulsed Thulium (Tm) laser (T(FWHM)=3.5ps, P0=20kW, ν(R)=30MHz, and P(avg)=2W). The fluoride fiber SC is generated in 10m of ZBLAN spanning the 0.9-4.1μm SC at the -30dB level. The ZBLAN fiber SC is then coupled into 10cm of As2Se3 chalcogenide Microstructured Optical Fiber (MOF) designed to have a zero-dispersion wavelength (λ(ZDW)) significantly below the 4.1μm InfraRed (IR) edge of the ZBLAN fiber SC, here 3.55μm. This allows the MIR solitons in the ZBLAN fiber SC to couple into anomalous dispersion in the chalcogenide fiber and further redshift out to the fiber loss edge at around 9μm. The final 0.9-9μm SC covers over 3 octaves in the MIR with around 15mW of power converted into the 6-9μm range.


Optics Express | 2014

Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm

Irnis Kubat; Christian Agger; Uffe Møller; Angela B. Seddon; Zhuoqi Tang; S. Sujecki; Trevor M. Benson; David Furniss; Samir Lamrini; Karsten Scholle; Peter Fuhrberg; Bruce Napier; Mark Farries; Jon Ward; Peter M. Moselund; Ole Bang

We present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr(3+)) chalcogenide fibre lasers. The 4.5um laser is assumed to have a repetition rate of 4MHz with 50ps long pulses having a peak power of 4.7kW. A thorough fibre design optimisation was conducted using measured material dispersion (As-Se/Ge-As-Se) and measured fibre loss obtained in fabricated fibre of the same materials. The loss was below 2.5dB/m in the 3.3-9.4μm region. Fibres with 8 and 10μm core diameters generated an SC out to 12.5 and 10.7μm in less than 2m of fibre when pumped with 0.75 and 1kW, respectively. Larger core fibres with 20μm core diameters for potential higher power handling generated an SC out to 10.6μm for the highest NA considered but required pumping at 4.7kW as well as up to 3m of fibre to compensate for the lower nonlinearities. The amount of power converted into the 8-10μm band was 7.5 and 8.8mW for the 8 and 10μm fibres, respectively. For the 20μm core fibres up to 46mW was converted.


Optics Express | 2008

Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy.

Peter Uhd Jepsen; Jens Kristian Jensen; Uffe Møller

We demonstrate a method based on self-referenced THz time-domain spectroscopy for inspection of aqueous liquids, and in particular alcohol solutions, inside closed containers. We demonstrate that it is possible to determine the alcohol content of an aqueous solution, and that liquids can be classified as either harmless or inflammable. The method operates in reflection mode with the result that liquids opaque to THz radiation can be characterized with little influence of the bottle shape. The method works with plastic bottles as well as glass bottles, with absorption of THz radiation by the plastic or the glass being the limiting factor. The reflection mode allows for automatic control of the validity of the measurement. The method will be useful in liquid scanning systems at security checkpoints.


Journal of The Optical Society of America B-optical Physics | 2012

Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation

Simon Toft Sørensen; Casper Larsen; Uffe Møller; Peter M. Moselund; Carsten L. Thomsen; Ole Bang

The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source.


Optics Express | 2012

Power dependence of supercontinuum noise in uniform and tapered PCFs

Uffe Møller; Simon Toft Sørensen; Christian Jakobsen; Jeppe Johansen; Peter M. Moselund; Carsten L. Thomsen; Ole Bang

We experimentally investigate the noise properties of picosecond supercontinuum spectra generated at different power levels in uniform and tapered photonic crystal fibers. We show that the noise at the spectral edges of the generated supercontinuum is at a constant level independent on the pump power in both tapered and uniform fibers. At high input power the spectral bandwidth is limited by the infrared loss edge, this however has no effect on the noise properties.


Optics Express | 2012

Deep-blue supercontinnum sources with optimum taper profiles--verification of GAM.

Simon Toft Sørensen; Uffe Møller; Casper Larsen; Peter M. Moselund; Christian Jakobsen; Jeppe Johansen; Thomas Vestergaard Andersen; Carsten L. Thomsen; Ole Bang

We use an asymmetric 2 m draw-tower photonic crystal fiber taper to demonstrate that the taper profile needs careful optimisation if you want to develop a supercontinuum light source with as much power as possible in the blue edge of the spectrum. In particular we show, that for a given taper length, the downtapering should be as long as possible. We argue how this may be explained by the concept of group-acceleration mismatch (GAM) and we confirm the results using conventional symmetrical short tapers made on a taper station, which have varying downtapering lengths.


Optics Letters | 2012

All-fiber femtosecond Cherenkov radiation source

Xiaomin Liu; Jesper Lægsgaard; Uffe Møller; Haohua Tu; Stephen A. Boppart; Dmitry Turchinovich

An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580-630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics such as bioimaging and microscopy.


Optics Express | 2016

Spectral-temporal composition matters when cascading supercontinua into the mid-infrared.

Christian Rosenberg Petersen; Peter M. Moselund; Christian Petersen; Uffe Møller; Ole Bang

Supercontinuum generation in chalcogenide fibers is a promising technology for broadband spatially coherent sources in the mid-infrared, but it suffers from discouraging commercial prospects, mainly due to a lack of suitable pump lasers. Here, a promising approach is experimentally demonstrated using an amplified 1.55 μm diode laser to generate a pump continuum up to 4.4 μm in cascaded silica and fluoride fibers. We present experimental evidence and numerical simulations confirming that the spectral-temporal composition of the pump continuum is critical for continued broadening in a chalcogenide fiber. The fundamental physical question is concerned with the long-wavelength components of the pump spectrum, which may consist of either solitons or dispersive waves. In demonstrating this we present a commercially viable fiber-cascading configuration to generate a mid-infrared supercontinuum up to 7 μm in commercial chalcogenide fibers.

Collaboration


Dive into the Uffe Møller's collaboration.

Top Co-Authors

Avatar

Ole Bang

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Peter M. Moselund

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Irnis Kubat

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Peter Uhd Jepsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Toft Sørensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Casper Larsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge