Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catarina S. Porto is active.

Publication


Featured researches published by Catarina S. Porto.


Toxicology and Applied Pharmacology | 2009

Cadmium-induced testicular injury.

Erica R. Siu; Dolores D. Mruk; Catarina S. Porto; C. Yan Cheng

Cadmium (Cd) is an environmental toxicant and an endocrine disruptor in humans and rodents. Several organs (e.g., kidney, liver) are affected by Cd and recent studies have illustrated that the testis is exceedingly sensitive to Cd toxicity. More important, Cd and other toxicants, such as heavy metals (e.g., lead, mercury) and estrogenic-based compounds (e.g., bisphenols) may account for the recent declining fertility in men among developed countries by reducing sperm count and testis function. In this review, we critically discuss recent data in the field that have demonstrated the Cd-induced toxicity to the testis is probably the result of interactions of a complex network of causes. This is likely to involve the disruption of the blood-testis barrier (BTB) via specific signal transduction pathways and signaling molecules, such as p38 mitogen-activated protein kinase (MAPK). We also summarize current studies on factors that confer and/or regulate the testis sensitivity to Cd, such as Cd transporters and metallothioneins, the impact of Cd on the testis as an endocrine disruptor and oxidative stress inducer, and how it may disrupt the Zn(2+) and/or Ca(2+) mediated cellular events. While much work is needed before a unified mechanistic pathway of Cd-induced testicular toxicity emerges, recent studies have helped to identify some of the likely mechanisms and/or events that take place during Cd-induced testis injury. Furthermore, some of the recent studies have shed lights on potential therapeutic or preventive approaches that can be developed in future studies by blocking or minimizing the destructive effects of Cd to testicular function in men.


Biology of Reproduction | 2008

17Beta-Estradiol Induces the Translocation of the Estrogen Receptors ESR1 and ESR2 to the Cell Membrane, MAPK3/1 Phosphorylation and Proliferation of Cultured Immature Rat Sertoli Cells

Thaís F.G. Lucas; Erica R. Siu; Carlos A. Esteves; Hugo P. Monteiro; Cleida A. Oliveira; Catarina S. Porto; Maria Fatima Magalhaes Lazari

Abstract The aim of the present study was to determine the mechanisms involved in estrogen actions in cultured rat Sertoli cells. RT-PCR detected transcripts for the estrogen receptors ESR1 and ESR2 in cultured immature Sertoli cells and in the testis of 15-, 28-, and 120-day-old rats. The expression of ESR1 and ESR2 was confirmed in Sertoli cells by immunofluorescence and Western blot. Immunohistochemistry with cryosections of testes from immature and adult rats revealed that ESR1 is present in Sertoli, Leydig, and some peritubular myoid cells, and ESR2 is present in multiple cell types, including germ cells. Treatment of Sertoli cells with 17beta-estradiol (E2) induced a translocation of ESR1 and ESR2 to the plasma membrane and a concomitant phosphorylation of MAPK3/1. Both effects reached a maximum after 10 min and were blocked by PP2, an inhibitor of the SRC family of protein tyrosine kinases, and by the antiestrogen ICI 182,780 (ICI). MAPK3/1 phosphorylation was also decreased in the presence of AG 1478, an inhibitor of the epidermal growth factor receptor (EGFR) kinase, and in the presence of MAP2K1/2 inhibitor UO126. Treatment with E2 for 24 h increased the incorporation of [methyl-3H]thymidine, which was blocked by ICI. These results indicate that E2 activates an SRC-mediated translocation of estrogen receptors to the plasma membrane, which results in the activation of EGFR and the mitogen-activated protein kinase signaling pathway. In addition, activation of ESR1 and/or ESR2 by E2 is involved in proliferation of immature Sertoli cells. The estrogen actions in Sertoli cells might be a key step mediating cellular events important for spermatogenesis and fertility.


Endocrinology | 2009

An Occludin-Focal Adhesion Kinase Protein Complex at the Blood-Testis Barrier: A Study Using the Cadmium Model

Erica R. Siu; Elissa W.P. Wong; Dolores D. Mruk; K. L. Sze; Catarina S. Porto; C. Yan Cheng

Several integral membrane proteins that constitute the blood-testis barrier (BTB) in mammalian testes, in particular rodents, are known to date. These include tight junction (TJ) proteins (e.g. occludin, junctional adhesion molecule-A, claudins), basal ectoplasmic specialization proteins (e.g. N-cadherin), and gap junction proteins (e.g. connexin43). However, the regulators (e.g. protein kinases and phosphatases) that affect these proteins, such as their interaction with the cytoskeletal actin, which in turn confer cell adhesion at the TJ, remain largely unknown. We report herein that focal adhesion kinase (FAK) is a putative interacting partner of occludin, but not claudin-11 or junctional adhesion molecule-A. Immunohistochemistry and fluorescence microscopy studies illustrated that the expression of FAK in the seminiferous epithelium of adult rat testes was stage specific. FAK colocalized with occludin at the BTB in virtually all stages of the seminiferous epithelial cycle but considerably diminished in stages VIII-IX, at the time of BTB restructuring to facilitate the transit of primary leptotene spermatocytes. Using Sertoli cells cultured in vitro with established TJ-permeability barrier and ultrastructures of TJ, basal ectoplasmic specialization and desmosome-like junction that mimicked the BTB in vivo, FAK was shown to colocalize with occludin and zonula occludens-1 (ZO-1) at the Sertoli-Sertoli cell interface. When these Sertoli cell cultures were treated with CdCl(2) to perturb the TJ-barrier function, occludin underwent endocytic-mediated internalization in parallel with FAK and ZO-1. Thus, these findings demonstrate that FAK is an integrated regulatory component of the occludin-ZO-1 protein complex, suggesting that functional studies can be performed to study the role of FAK in BTB dynamics.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Focal adhesion kinase is a blood–testis barrier regulator

Erica R. Siu; Elissa W.P. Wong; Dolores D. Mruk; Catarina S. Porto; C. Yan Cheng

In mammalian testes, such as rats, the mechanism(s) that regulate blood–testis barrier (BTB) restructuring at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis to facilitate the transit of preleptotene/leptotene spermatocytes is not known. This is due to the lack of information on the regulatory proteins at the BTB. Herein, focal adhesion kinase (FAK), a nonreceptor protein tyrosine kinase, is shown to structurally interact with occludin and ZO-1 to form a functional protein complex at the BTB. Its expression at the BTB in the seminiferous epithelium is stage specific, being lowest at stage VIII–IX tubules, analogous to the expression pattern of occludin. Using primary Sertoli cells cultured in vitro with an established tight junction (TJ) permeability barrier that mimics the BTB in vivo, the knockdown of FAK by RNAi led to a transient disruption of the TJ barrier. This was accompanied by a loss of association between occludin and ZO-1, likely the result of reduced occludin phosphorylation at Tyr and Ser residues, but not Thr, which in turn led to a redistribution of occludin at the Sertoli–Sertoli cell interface, moving from cell membrane into cell cytosol, thereby disrupting the BTB. These findings suggest that a similar mechanism is in place in the testis in vivo to regulate BTB restructuring to facilitate the transit of primary spermatocytes. Furthermore, FAK was shown to be a molecular target of cadmium because its knockdown would desensitize Sertoli cells to cadmium-induced TJ barrier disruption. In summary, FAK is a unique regulator of BTB dynamics in the testis.


Journal of Andrology | 2011

Estrogen and Its Receptors in Efferent Ductules and Epididymis

Rex A. Hess; Sheilla Alessandra Ferreira Fernandes; Gisele Renata Oliveira Gomes; Cleida A. Oliveira; Maria Fatima Magalhaes Lazari; Catarina S. Porto

Estrogens play key roles in the development and maintenance of male reproductive function and fertility. In this review, we briefly describe the localization and function of estrogen receptors ESR1 and ESR2 (also known as ERα and ERβ, respectively) and the expression of G protein-coupled estrogen receptor-1 (GPER, formerly known as GPR30) in efferent ductules and epididymis. The efferent ductules present the highest levels of ESR1 and ESR2 in the male reproductive system, and represent a major target of estrogen action. In efferent ductules, ESR1 has a crucial role in the regulation of fluid reabsorption, and in the epididymis the receptor helps to maintain fluid osmolality and pH. ESR1 expression in the epididymal epithelium shows considerable variation among species, but differences in laboratory techniques may also contribute to this variation. Here we report that Esr1 mRNA and protein are higher in corpus than in other regions of the rat epididymis. The mRNA level for Gper was also higher in corpus. Although ESR1 is expressed constitutively in efferent ductules and down-regulated by estrogen, in the epididymis, both testosterone (T) and estradiol (E2) may regulate its expression. T and E2 are, respectively, higher and lower in the corpus than in the initial segment/caput and cauda regions. It is important to determine the expression of GPER, ESR1, androgen receptor, and their respective cofactors in specific cell types of this tissue, as well as the intracellular signaling pathways involved in efferent ductules and epididymis. These studies will help to explain the consequences of exposures to environmental endocrine disruptors and provide potential targets for the development of a male contraceptive.


Biology of Reproduction | 2010

Expression and Signaling of G Protein-Coupled Estrogen Receptor 1 (GPER) in Rat Sertoli Cells

Thaís F.G. Lucas; Carine Royer; Erica R. Siu; Maria Fatima Magalhaes Lazari; Catarina S. Porto

The aim of the present study was to investigate the expression and signaling of the G protein-coupled estrogen receptor 1 (GPER) in cultured immature rat Sertoli cells—in which we have previously described the classical estrogen receptors (ESR1 and ESR2). Expression of GPER in cultured Sertoli cells from 15-day-old rats was detected by RT-PCR and immunoassays. Gper transcripts also were present in testes from 5-, 15-, and 120-day-old rats. Short-term treatment of Sertoli cells with 17beta-estradiol (E2), the GPER agonist G-1, or the ESR antagonist ICI 182,780 (ICI) rapidly activated MAPK3/1 (ERK1/2), even after down-regulation of ESR1 and ESR2, suggesting a role for GPER in the rapid E2 action in these cells. MAPK3/1 phosphorylation induced by ICI or G-1 was blocked by pertussis toxin, selective inhibitor of the SRC family of protein tyrosine kinases, metalloprotease inhibitor, MAP2K1/2 inhibitor, and epidermal growth factor receptor (EGFR) kinase inhibitor. Furthermore, E2, but not G-1, induced up-regulation of cyclin D1 in the Sertoli cells. This effect was blocked by ICI. E2 and G-1 decreased BAX and increased BCL2 expression and these effects were blocked by MAP2K1/2 inhibitor and EGFR kinase inhibitor. The pretreatment with ICI did not block the effect of E2. Taken together, these results indicate that in Sertoli cells 1) GPER-mediated MAPK3/1 activation occurs via EGFR transactivation through G protein beta gamma subunits that promote SRC-mediated metalloprotease-dependent release of EGFR ligands, which bind to EGFR and lead to MAPK3/1 phosphorylation; 2) E2-ESRs play a role in Sertoli cell proliferation; and 3) E2-GPER may regulate gene expression involved with apoptosis. ESR and GPER may mediate actions important for Sertoli cell function and maintenance of normal testis development and homeostasis.


The Journal of Steroid Biochemistry and Molecular Biology | 1995

Receptors for androgen-binding proteins : internalization and intracellular signalling

Catarina S. Porto; Maria Fatima M. Lazari; Lygia C. Abreu; C. Wayne Bardin; Glen L. Gunsalus

In plasma, most steroid hormones are bound and transported by the specific binding protein, testosterone-estradiol-binding globulin (TeBG). For years, it was believed that the only function of this protein was to regulate the concentration of free steroids in plasma. However, a number of reports have provided evidence for the presence of specific TeBG receptors on plasma membranes. Furthermore, the interaction of TeBG with its receptor was shown to be inhibited when steroids are bound to TeBG, suggesting that TeBG is an allosteric protein. The purpose of this manuscript is to review the evidence that androgen-binding proteins bind to membrane receptors, and, in some cells, this binding stimulates cAMP accumulation, and transfer TeBG/ABP into tissue as a consequence of receptor mediated endocytosis. Recent studies from our laboratories have demonstrated binding and uptake of TeBG by MCF-7 breast cancer cells. The interaction of unligated rabbit TeBG with membranes from MCF-7 cells resulted in a time and concentration-dependent increase in adenylate cyclase activity. The TeBG alone also had a reproducible effect on intact cells by increasing cAMP accumulation by 30-35%. The addition of DHT to cells, after TeBG has been allowed to bind, resulted in increases in cAMP of greater than 4-fold. This effect was not blocked by antiandrogens. These data support the hypothesis that extracellular SHBG is a regulator of cellular function through a membrane receptor that is coupled to adenylate cyclase.


Biology of Reproduction | 2012

17Beta-Estradiol Signaling and Regulation of Proliferation and Apoptosis of Rat Sertoli Cells

Carine Royer; Thaís F.G. Lucas; Maria Fatima Magalhaes Lazari; Catarina S. Porto

ABSTRACT The aim of the present study was to investigate the intracellular signaling events downstream of the classical estrogen receptors (ESRs) and G protein-coupled estrogen receptor 1 (GPER) involved in regulation of proliferation and apoptosis of rat Sertoli cells, in which we have previously described ESR1, ESR2, and GPER. ESRs play a role in Sertoli cell proliferation, and GPER, but not ESRs, plays a role modulating gene expression involved with apoptosis. The present study shows that 17beta-estradiol (E2) and the GPER-selective agonist G-1 rapidly activate phosphatidylinositol 3-kinase (PIK3)/serine threonine protein kinase (AKT) and cyclic AMP response element-binding (CREB) phosphorylation. E2 and the ESR1-selective agonist 4,4′,4″-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) increase the expression of cyclin D1 (CCND1), whereas the ESR2-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and G-1 do not change the expression of this protein, suggesting that ESR1 is the upstream receptor regulating Sertoli cell proliferation. E2- or PPT-ESR1, through activation of epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase 3/1 (MAPK3/1) and PIK3 pathways, induces upregulation of CCND1. KG-501, the compound that disrupts the phospho-CREB/CREB binding protein (CBP) complex, does not change E2- or PPT-ESR1-mediated CCND1 expression, suggesting that phospho-CREB/cyclic AMP response element/CBP is not involved in the expression of this protein. E2- or G-1-GPER, through activation of EGFR/MAPK3/1 and PIK3 pathways, may be involved in the upregulation of antiapoptotic proteins BCL2 and BCL2L2. E2- or G-1-GPER/EGFR/MAPK3/1/phospho-CREB decreases BAX expression. Taken together, these results show a differential effect of E2-GPER on the CREB-mediated transcription of proapoptotic and antiapoptotic genes of the same BCL2 gene family. ESR1 and GPER can mediate the rapid E2 actions in the Sertoli cells, which in turn can modulate nuclear transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development, and to direct further studies, which may contribute to better understanding of the causes of male infertility.


Spermatogenesis | 2011

17β-estradiol signaling and regulation of Sertoli cell function

Thaís F.G. Lucas; Maristela T. Pimenta; Raisa Pisolato; Maria Fatima M. Lazari; Catarina S. Porto

In this review, we will present an overview of estrogen actions in the testis from immature and adult animals, with special emphasis on signaling mechanisms involved in the 17β-estradiol regulation of Sertoli cell function from in immature rats. 17β-estradiol activates Sertoli cell proliferation in immature rats by a mechanism that involves the translocation of the estrogen receptors ESR1 and ESR2 to the plasma membrane, phosphorylation of epidermal growth factor receptor and activation of mitogen-activated protein kinase 3/1. Activation of the G protein-coupled estrogen receptor (GPER) also induces phosphorylation of mitogen-activated protein kinase 3/1 via epidermal growth factor receptor transactivation, which in turn increases expression of the antiapoptotic protein BCL2 and decreases the expression of proapoptotic protein BAX, indicating an antiapoptotic role of E2-GPER in immature rat Sertoli cells. In conclusion, ESRs and GPER can mediate rapid 17β-estradiol signaling in Sertoli cells, and modulate transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development and to direct further studies, which may contribute to better understand the causes of male infertility.


Reproductive Biology and Endocrinology | 2007

Relaxin family peptide receptors Rxfp1 and Rxfp2: mapping of the mRNA and protein distribution in the reproductive tract of the male rat

Marcelo Filonzi; Laís C Cardoso; Maristela T. Pimenta; Daniel B.C. Queiróz; Maria Cw Avellar; Catarina S. Porto; Maria Fm Lazari

BackgroundRelaxin is the endogenous ligand of the G-protein coupled receptor RXFP1, previously known as LGR7. In humans relaxin can also activate, but with lower affinity, the closely related receptor for the insulin-like peptide from Leydig cells, RXFP2, previously known as LGR8. The lack of relaxin impairs male fertility but the precise distribution and the function of relaxin receptors in the male reproductive tract is not known. We investigated the distribution of Rxfp1 and Rxfp2 in the reproductive tract of the male rat and the function of relaxin in the vas deferens, a tissue with high expression of both receptors.MethodsThe presence of mRNA for Rxfp1 and Rxfp2 was investigated in testes, cultured Sertoli cells, epididymis, vas deferens, seminal vesicle, prostate, and spermatozoa by RT-PCR and Southern blot. Protein expression in the testis, vas deferens, primary culture of Sertoli cells, and spermatozoa was assessed by immunohistochemistry and immunofluorescence. The role of relaxin in the vas deferens was evaluated by contractility studies and radioimmunoassay of cAMP production. The effect of relaxin on mRNA levels for metalloproteinase-7 was measured by Northern blot.ResultsTranscripts for Rxfp1 and Rxfp2 were present in almost all parts of the male reproductive tract, with high levels in testis and vas deferens. Both receptors were immunolocalized in late stage germ cells but not in mature spermatozoa, although mRNAs for both receptors were also present in mature spermatozoa. Rxfp1 but not Rxfp2 was detected in cultured Sertoli cells. Strong immunostaining for Rxfp1 and Rxfp2 was seen in muscular and epithelial layers of the vas deferens and in arteriolar walls. Relaxin did not affect contractility and cyclic AMP production of the vas deferens, but increased the levels of mRNA for metalloproteinase-7.ConclusionRxfp1 and Rxfp2 are widely and similarly distributed throughout the male reproductive tract. Our results suggest that Rxfp1 on spermatids and Sertoli cells may be important in spermatogenesis. Relaxin in the vas deferens does not affect contractility, but may affect vascular compliance and collagen and matrix remodeling.

Collaboration


Dive into the Catarina S. Porto's collaboration.

Top Co-Authors

Avatar

Thaís F.G. Lucas

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Christina W. Avellar

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carine Royer

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Maróstica

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Erica R. Siu

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Maristela T. Pimenta

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Fabiana Yasuhara

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge