Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thaís F.G. Lucas is active.

Publication


Featured researches published by Thaís F.G. Lucas.


Biology of Reproduction | 2008

17Beta-Estradiol Induces the Translocation of the Estrogen Receptors ESR1 and ESR2 to the Cell Membrane, MAPK3/1 Phosphorylation and Proliferation of Cultured Immature Rat Sertoli Cells

Thaís F.G. Lucas; Erica R. Siu; Carlos A. Esteves; Hugo P. Monteiro; Cleida A. Oliveira; Catarina S. Porto; Maria Fatima Magalhaes Lazari

Abstract The aim of the present study was to determine the mechanisms involved in estrogen actions in cultured rat Sertoli cells. RT-PCR detected transcripts for the estrogen receptors ESR1 and ESR2 in cultured immature Sertoli cells and in the testis of 15-, 28-, and 120-day-old rats. The expression of ESR1 and ESR2 was confirmed in Sertoli cells by immunofluorescence and Western blot. Immunohistochemistry with cryosections of testes from immature and adult rats revealed that ESR1 is present in Sertoli, Leydig, and some peritubular myoid cells, and ESR2 is present in multiple cell types, including germ cells. Treatment of Sertoli cells with 17beta-estradiol (E2) induced a translocation of ESR1 and ESR2 to the plasma membrane and a concomitant phosphorylation of MAPK3/1. Both effects reached a maximum after 10 min and were blocked by PP2, an inhibitor of the SRC family of protein tyrosine kinases, and by the antiestrogen ICI 182,780 (ICI). MAPK3/1 phosphorylation was also decreased in the presence of AG 1478, an inhibitor of the epidermal growth factor receptor (EGFR) kinase, and in the presence of MAP2K1/2 inhibitor UO126. Treatment with E2 for 24 h increased the incorporation of [methyl-3H]thymidine, which was blocked by ICI. These results indicate that E2 activates an SRC-mediated translocation of estrogen receptors to the plasma membrane, which results in the activation of EGFR and the mitogen-activated protein kinase signaling pathway. In addition, activation of ESR1 and/or ESR2 by E2 is involved in proliferation of immature Sertoli cells. The estrogen actions in Sertoli cells might be a key step mediating cellular events important for spermatogenesis and fertility.


Biology of Reproduction | 2010

Expression and Signaling of G Protein-Coupled Estrogen Receptor 1 (GPER) in Rat Sertoli Cells

Thaís F.G. Lucas; Carine Royer; Erica R. Siu; Maria Fatima Magalhaes Lazari; Catarina S. Porto

The aim of the present study was to investigate the expression and signaling of the G protein-coupled estrogen receptor 1 (GPER) in cultured immature rat Sertoli cells—in which we have previously described the classical estrogen receptors (ESR1 and ESR2). Expression of GPER in cultured Sertoli cells from 15-day-old rats was detected by RT-PCR and immunoassays. Gper transcripts also were present in testes from 5-, 15-, and 120-day-old rats. Short-term treatment of Sertoli cells with 17beta-estradiol (E2), the GPER agonist G-1, or the ESR antagonist ICI 182,780 (ICI) rapidly activated MAPK3/1 (ERK1/2), even after down-regulation of ESR1 and ESR2, suggesting a role for GPER in the rapid E2 action in these cells. MAPK3/1 phosphorylation induced by ICI or G-1 was blocked by pertussis toxin, selective inhibitor of the SRC family of protein tyrosine kinases, metalloprotease inhibitor, MAP2K1/2 inhibitor, and epidermal growth factor receptor (EGFR) kinase inhibitor. Furthermore, E2, but not G-1, induced up-regulation of cyclin D1 in the Sertoli cells. This effect was blocked by ICI. E2 and G-1 decreased BAX and increased BCL2 expression and these effects were blocked by MAP2K1/2 inhibitor and EGFR kinase inhibitor. The pretreatment with ICI did not block the effect of E2. Taken together, these results indicate that in Sertoli cells 1) GPER-mediated MAPK3/1 activation occurs via EGFR transactivation through G protein beta gamma subunits that promote SRC-mediated metalloprotease-dependent release of EGFR ligands, which bind to EGFR and lead to MAPK3/1 phosphorylation; 2) E2-ESRs play a role in Sertoli cell proliferation; and 3) E2-GPER may regulate gene expression involved with apoptosis. ESR and GPER may mediate actions important for Sertoli cell function and maintenance of normal testis development and homeostasis.


Biology of Reproduction | 2012

17Beta-Estradiol Signaling and Regulation of Proliferation and Apoptosis of Rat Sertoli Cells

Carine Royer; Thaís F.G. Lucas; Maria Fatima Magalhaes Lazari; Catarina S. Porto

ABSTRACT The aim of the present study was to investigate the intracellular signaling events downstream of the classical estrogen receptors (ESRs) and G protein-coupled estrogen receptor 1 (GPER) involved in regulation of proliferation and apoptosis of rat Sertoli cells, in which we have previously described ESR1, ESR2, and GPER. ESRs play a role in Sertoli cell proliferation, and GPER, but not ESRs, plays a role modulating gene expression involved with apoptosis. The present study shows that 17beta-estradiol (E2) and the GPER-selective agonist G-1 rapidly activate phosphatidylinositol 3-kinase (PIK3)/serine threonine protein kinase (AKT) and cyclic AMP response element-binding (CREB) phosphorylation. E2 and the ESR1-selective agonist 4,4′,4″-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) increase the expression of cyclin D1 (CCND1), whereas the ESR2-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and G-1 do not change the expression of this protein, suggesting that ESR1 is the upstream receptor regulating Sertoli cell proliferation. E2- or PPT-ESR1, through activation of epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase 3/1 (MAPK3/1) and PIK3 pathways, induces upregulation of CCND1. KG-501, the compound that disrupts the phospho-CREB/CREB binding protein (CBP) complex, does not change E2- or PPT-ESR1-mediated CCND1 expression, suggesting that phospho-CREB/cyclic AMP response element/CBP is not involved in the expression of this protein. E2- or G-1-GPER, through activation of EGFR/MAPK3/1 and PIK3 pathways, may be involved in the upregulation of antiapoptotic proteins BCL2 and BCL2L2. E2- or G-1-GPER/EGFR/MAPK3/1/phospho-CREB decreases BAX expression. Taken together, these results show a differential effect of E2-GPER on the CREB-mediated transcription of proapoptotic and antiapoptotic genes of the same BCL2 gene family. ESR1 and GPER can mediate the rapid E2 actions in the Sertoli cells, which in turn can modulate nuclear transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development, and to direct further studies, which may contribute to better understanding of the causes of male infertility.


Spermatogenesis | 2011

17β-estradiol signaling and regulation of Sertoli cell function

Thaís F.G. Lucas; Maristela T. Pimenta; Raisa Pisolato; Maria Fatima M. Lazari; Catarina S. Porto

In this review, we will present an overview of estrogen actions in the testis from immature and adult animals, with special emphasis on signaling mechanisms involved in the 17β-estradiol regulation of Sertoli cell function from in immature rats. 17β-estradiol activates Sertoli cell proliferation in immature rats by a mechanism that involves the translocation of the estrogen receptors ESR1 and ESR2 to the plasma membrane, phosphorylation of epidermal growth factor receptor and activation of mitogen-activated protein kinase 3/1. Activation of the G protein-coupled estrogen receptor (GPER) also induces phosphorylation of mitogen-activated protein kinase 3/1 via epidermal growth factor receptor transactivation, which in turn increases expression of the antiapoptotic protein BCL2 and decreases the expression of proapoptotic protein BAX, indicating an antiapoptotic role of E2-GPER in immature rat Sertoli cells. In conclusion, ESRs and GPER can mediate rapid 17β-estradiol signaling in Sertoli cells, and modulate transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development and to direct further studies, which may contribute to better understand the causes of male infertility.


Arquivos Brasileiros De Endocrinologia E Metabologia | 2009

Estrogen receptors and function in the male reproductive system

Maria Fatima Magalhaes Lazari; Thaís F.G. Lucas; Fabiana Yasuhara; Gisele Renata Oliveira Gomes; Erica Rosanna Siu; Carine Royer; Sheilla Alessandra Ferreira Fernandes; Catarina S. Porto

A substantial advance in our understanding on the estrogen signaling occurred in the last decade. Estrogens interact with two receptors, ESR1 and ESR2, also known as ERalpha and ERbeta, respectively. ESR1 and ESR2 belong to the nuclear receptor family of transcription factors. In addition to the well established transcriptional effects, estrogens can mediate rapid signaling, triggered within seconds or minutes. These rapid effects can be mediated by ESRs or the G protein-coupled estrogen receptor GPER, also known as GPR30. The effects of estrogen on cell proliferation, differentiation and apoptosis are often mediated by growth factors. The understanding of the cross-talk between androgen, estrogen and growth factors signaling pathways is therefore essential to understand the physiopathological mechanisms of estrogen action. In this review we focused on recent discoveries about the nature of the estrogen receptors, and on the signaling and function of estrogen in the male reproductive system.


Spermatogenesis | 2013

Physiopathological aspects of the Wnt/β-catenin signaling pathway in the male reproductive system

Ana Paola G. Lombardi; Carine Royer; Raisa Pisolato; Fernanda N. Cavalcanti; Thaís F.G. Lucas; Maria Fatima M. Lazari; Catarina S. Porto

The Wnt/β-catenin signaling pathway controls several biological processes throughout development and adult life. Dysregulation of Wnt/β-catenin signaling underlies a wide range of pathologies in animals and humans, including cancer in different tissues. In this review, we provide an update of the Wnt/β-catenin signaling pathway and the possible roles of the Wnt/β-catenin signaling in the biology of testis, epididymis and prostate. Data from our laboratory suggest the involvement of 17β-estradiol and estrogen receptors (ERs) on the regulation of β-catenin expression in rat Sertoli cells. We also provide emerging evidences of the involvement of Wnt/β-catenin pathway in testis and prostate cancer. Our understanding of the role of Wnt/β-Catenin signaling in male reproductive tissues is still evolving, and several questions are open to be addressed in the future.


Molecular and Cellular Endocrinology | 2014

Differential role of the estrogen receptors ESR1 and ESR2 on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats.

Thaís F.G. Lucas; Maria Fatima Magalhaes Lazari; Catarina S. Porto

The aim of the present study was to investigate the role of each estrogen receptors on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats. Activation of ESR1 by 17β-estradiol (E2) and ESR1-selective agonist PPT increased CCND1 expression, and this effect was dependent on NF-kB activation. E2 and the ESR2-selective agonist DPN, but not PPT, increased, in a PI3K and CREB-dependent manner, the expression of CDKN1B and the transcription factors GATA-1 and DMRT1. Analyzing the expression of ESR1 and ESR2 in different stages of development of Sertoli cells, we observed that the ESR1/ESR2 ratio decreased with age, and this ratio seems to be important to determine the end of cell proliferation and the start of cell differentiation. In Sertoli cells from 15-day-old rats, the ESR1/ESR2 ratio favors the effect of ESR1 and the activation of this receptor increased [Methyl-(3)H]thymidine incorporation. We propose that in Sertoli cells from 15-day-old rats E2 modulates Sertoli cell proliferation through ESR1/NF-kB-mediated increase of CCND1, and cell cycle exit and differentiation through ESR2/CREB-mediated increase of CDKN1B, GATA-1 and DMRT1. The present study reinforces the important role of estrogen for normal testis development.


European Journal of Pharmacology | 2012

Intracellular signaling pathways involved in the relaxin-induced proliferation of rat Sertoli cells

Aline R. Nascimento; Maristela T. Pimenta; Thaís F.G. Lucas; Carine Royer; Catarina S. Porto; Maria Fatima Magalhaes Lazari

Regulation of Sertoli cell number is a key event to determine normal spermatogenesis. We have previously shown that relaxin and its G-protein coupled receptor RXFP1 are expressed in rat Sertoli cells, and that relaxin stimulates Sertoli cell proliferation. This study examined the mechanisms underlying the mitogenic effect of relaxin in a primary culture of Sertoli cells removed from testes of immature rats. Stimulation with exogenous relaxin increased Sertoli cell number and the expression of the proliferating cell nuclear antigen (PCNA), but did not affect the mRNA level of the differentiation markers cadherins 1 and 2. Relaxin-induced Sertoli cell proliferation was blocked by inhibition of MEK/ERK1/2 or PI3K/AKT pathways, but not by inhibition of PKC or EGFR activity. Relaxin induced a rapid and transient activation of ERK1/2 phosphorylation, which was MEK and SRC-dependent, and involved upstream activation of G(i). AKT activation could be detected 5 min after relaxin stimulation, and was still detected after 24h of stimulation with relaxin. Relaxin-induced AKT phosphorylation was G(i)- but not PKA-dependent, and it was blocked by both PI3K and MEK inhibitors. In conclusion, the mitogenic effect of relaxin in Sertoli cell involves coupling to G(i) and activation of both MEK/ERK1/2 and PI3K/AKT pathways.


Steroids | 2011

Estrogen receptors mediate rapid activation of phospholipase C pathway in the rat endometrium.

Vivian C. Konigame; Erica R. Siu; Carine Royer; Thaís F.G. Lucas; Catarina S. Porto; Fernando Maurício Francis Abdalla

The aim of the present study was to investigate the activation of rapid signaling events by 17β-estradiol in the rat uterus. 17β-Estradiol induced a rapid increase of total [3H]-inositol phosphate accumulation in the whole uterus and endometrium, but not in the myometrium. The effect of 17β-estradiol in the endometrium was blocked by phospholipase C (PLC) inhibitor (U73122), estrogen receptors antagonist (ICI 182,780), exportin CRM1 inhibitor (leptomycin B) and selective inhibitor of the SRC family of protein tyrosine kinases (PP2). Furthermore, a selective agonist of ESR1 (PPT) and a selective agonist of GPER (G-1) also induced a rapid increase of total [(3)H]-inositol phosphate accumulation in the endometrium. The G-1 effects were blocked by GPER antagonist (G-15). 17β-Estradiol and G-1 promoted an additive effect on total [3H]-inositol phosphate accumulation. In conclusion, the present results indicate that a rapid activation of the PLC-mediated phosphoinositide hydrolysis occurred in the rat endometrium after 17β-estradiol stimulation, and this effect was mediated by ESR1 that underwent nuclear export after hormone stimulation, and that GPER activation may play an additive role for this response. These rapid actions might be one of the key steps that mediate the estrogen-dependent activation of cellular events in the endometrium.


Steroids | 2016

Expression and regulation of the estrogen receptors in PC-3 human prostate cancer cells ☆

Raisa Pisolato; Ana Paola G. Lombardi; Carolina Meloni Vicente; Thaís F.G. Lucas; Maria Fatima Magalhaes Lazari; Catarina S. Porto

The aim of this study was to identify the expression, cellular localization and regulation of classic estrogen receptors ERα and ERβ, ER-α36 isoform and GPER in the androgen-independent prostate cancer cell line PC-3. In addition, we evaluated the relative contribution of these receptors to the activation of the ERK1/2 (extracellular signal-regulated protein kinases) signaling pathway. These four estrogen receptors were detected by Western blot assays and were shown by immunofluorescence assays to localize preferentially in extranuclear regions of PC-3 cells. In addition, treatment with 17β-estradiol (E2) (1 μM) for 24 h led to down-regulation of the classic estrogen receptors, whereas E2 at physiological concentration (0.1 nM) for 24h tended to increase the levels of ERα and ERβ. Furthermore, the ERα-selective agonist PPT selectively increased the expression of ERβ and the ERβ-selective agonist DPN increased ERα levels. None of these treatments affected expression of the ER-α36 isoform. The unusual cytoplasmic localization of the classic estrogen receptors in these cells differs from the nuclear localization in the majority of estrogen target cells and suggests that rapid signaling pathways may be preferentially activated. In fact, treatment with selective agonists of ERα, ERβ and GPER induced ERK1/2 phosphorylation that was blocked by the respective antagonists. On the other hand, activation of ERK1/2 induced by E2 may involve additional mechanisms because it was not blocked by the three antagonists. Taken together, the results indicate that there is a crosstalk between ERα and ERβ to regulate the expression of each other, and suggest the involvement of other receptors, such as ER-α36, in the rapid ERK1/2 activation by E2. The identification of new isoforms of ERs, regulation of the receptors and signaling pathways is important to develop new therapeutic strategies for the castration-resistant prostate cancer.

Collaboration


Dive into the Thaís F.G. Lucas's collaboration.

Top Co-Authors

Avatar

Catarina S. Porto

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carine Royer

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Erica R. Siu

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raisa Pisolato

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Aline R. Nascimento

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Ana Paola G. Lombardi

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Maristela T. Pimenta

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Carolina Meloni Vicente

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge