Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Brunel-Guitton is active.

Publication


Featured researches published by Catherine Brunel-Guitton.


Human Mutation | 2015

De Novo Mutations in the Motor Domain of KIF1A Cause Cognitive Impairment, Spastic Paraparesis, Axonal Neuropathy, and Cerebellar Atrophy

Jae-Ran Lee; Myriam Srour; Doyoun Kim; Fadi F. Hamdan; So Hee Lim; Catherine Brunel-Guitton; Jean Claude Décarie; Elsa Rossignol; Grant A. Mitchell; Allison Schreiber; Rocio Moran; Keith Van Haren; Randal Richardson; Joost Nicolai; Karin M E J Oberndorff; Justin D. Wagner; Kym M. Boycott; Elisa Rahikkala; Nella Junna; Henna Tyynismaa; Inge Cuppen; Nienke E. Verbeek; Connie Stumpel; M.A.A.P. Willemsen; Sonja de Munnik; Guy A. Rouleau; Eunjoon Kim; Erik Jan Kamsteeg; Tjitske Kleefstra; Jacques L. Michaud

KIF1A is a neuron‐specific motor protein that plays important roles in cargo transport along neurites. Recessive mutations in KIF1A were previously described in families with spastic paraparesis or sensory and autonomic neuropathy type‐2. Here, we report 11 heterozygous de novo missense mutations (p.S58L, p.T99M, p.G102D, p.V144F, p.R167C, p.A202P, p.S215R, p.R216P, p.L249Q, p.E253K, and p.R316W) in KIF1A in 14 individuals, including two monozygotic twins. Two mutations (p.T99M and p.E253K) were recurrent, each being found in unrelated cases. All these de novo mutations are located in the motor domain (MD) of KIF1A. Structural modeling revealed that they alter conserved residues that are critical for the structure and function of the MD. Transfection studies suggested that at least five of these mutations affect the transport of the MD along axons. Individuals with de novo mutations in KIF1A display a phenotype characterized by cognitive impairment and variable presence of cerebellar atrophy, spastic paraparesis, optic nerve atrophy, peripheral neuropathy, and epilepsy. Our findings thus indicate that de novo missense mutations in the MD of KIF1A cause a phenotype that overlaps with, while being more severe, than that associated with recessive mutations in the same gene.


Genetics in Medicine | 2017

Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society

Sumit Parikh; Amy Goldstein; Amel Karaa; Mary Kay Koenig; Irina Anselm; Catherine Brunel-Guitton; John Christodoulou; Bruce H. Cohen; David Dimmock; Gregory M. Enns; Marni J. Falk; Annette Feigenbaum; Richard E. Frye; Jaya Ganesh; David Griesemer; Richard H. Haas; Rita Horvath; Mark S. Korson; Michael C. Kruer; Michelangelo Mancuso; Shana E. McCormack; Marie Josee Raboisson; Tyler Reimschisel; Ramona Salvarinova; Russell P. Saneto; Fernando Scaglia; John M. Shoffner; Peter W. Stacpoole; Carolyn M. Sue; Mark A. Tarnopolsky

The purpose of this statement is to provide consensus-based recommendations for optimal management and care for patients with primary mitochondrial disease. This statement is intended for physicians who are engaged in the diagnosis and management of these patients. Working group members were appointed by the Mitochondrial Medicine Society. The panel included members with several different areas of expertise. The panel members utilized surveys and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. Consensus-based recommendations are provided for the routine care and management of patients with primary genetic mitochondrial disease.


Journal of Inherited Metabolic Disease | 2015

Inborn errors of cytoplasmic triglyceride metabolism

Jiang Wei Wu; Hao Yang; Shu Pei Wang; Krishnakant G. Soni; Catherine Brunel-Guitton; Grant A. Mitchell

Triglyceride (TG) synthesis, storage, and degradation together constitute cytoplasmic TG metabolism (CTGM). CTGM is mostly studied in adipocytes, where starting from glycerol-3-phosphate and fatty acyl (FA)-coenzyme A (CoA), TGs are synthesized then stored in cytoplasmic lipid droplets. TG hydrolysis proceeds sequentially, producing FAs and glycerol. Several reactions of CTGM can be catalyzed by more than one enzyme, creating great potential for complex tissue-specific physiology. In adipose tissue, CTGM provides FA as a systemic energy source during fasting and is related to obesity. Inborn errors and mouse models have demonstrated the importance of CTGM for non-adipose tissues, including skeletal muscle, myocardium and liver, because steatosis and dysfunction can occur. We discuss known inborn errors of CTGM, including deficiencies of: AGPAT2 (a form of generalized lipodystrophy), LPIN1 (childhood rhabdomyolysis), LPIN2 (an inflammatory condition, Majeed syndrome, described elsewhere in this issue), DGAT1 (protein loosing enteropathy), perilipin 1 (partial lipodystrophy), CGI-58 (gene ABHD5, neutral lipid storage disease (NLSD) with ichthyosis and “Jordan’s anomaly” of vacuolated polymorphonuclear leukocytes), adipose triglyceride lipase (ATGL, gene PNPLA2, NLSD with myopathy, cardiomyopathy and Jordan’s anomaly), hormone-sensitive lipase (HSL, gene LIPE, hypertriglyceridemia, and insulin resistance). Two inborn errors of glycerol metabolism are known: glycerol kinase (GK, causing pseudohypertriglyceridemia) and glycerol-3-phosphate dehydrogenase (GPD1, childhood hepatic steatosis). Mouse models often resemble human phenotypes but may diverge markedly. Inborn errors have been described for less than one-third of CTGM enzymes, and new phenotypes may yet be identified.


Journal of Inherited Metabolic Disease | 2016

Biosynthesis of glycosaminoglycans: associated disorders and biochemical tests

Florin Sasarman; Catalina Maftei; Philippe M. Campeau; Catherine Brunel-Guitton; Grant A. Mitchell; Pierre Allard

Glycosaminoglycans (GAG) are long, unbranched heteropolymers with repeating disaccharide units that make up the carbohydrate moiety of proteoglycans. Six distinct classes of GAGs are recognized. Their synthesis follows one of three biosynthetic pathways, depending on the type of oligosaccharide linker they contain. Chondroitin sulfate, dermatan sulfate, heparan sulfate, and heparin sulfate contain a common tetrasaccharide linker that is O-linked to specific serine residues in core proteins. Keratan sulfate can contain three different linkers, either N-linked to asparagine or O-linked to serine/threonine residues in core proteins. Finally, hyaluronic acid does not contain a linker and is not covalently attached to a core protein. Most inborn errors of GAG biosynthesis are reported in small numbers of patients. To date, in 20 diseases, convincing evidence for pathogenicity has been presented for mutations in a total of 16 genes encoding glycosyltransferases, sulfotransferases, epimerases or transporters. GAG synthesis defects should be suspected in patients with a combination of characteristic clinical features in more than one connective tissue compartment: bone and cartilage (short long bones with or without scoliosis), ligaments (joint laxity/dislocations), and subepithelial (skin, sclerae). Some produce distinct clinical syndromes. The commonest laboratory tests used for this group of diseases are analysis of GAGs, enzyme assays, and molecular testing. In principle, GAG analysis has potential as a general first-line diagnostic test for GAG biosynthesis disorders.


Human Molecular Genetics | 2015

An N-terminal formyl methionine on COX 1 is required for the assembly of cytochrome c oxidase

Reetta Hinttala; Florin Sasarman; Tamiko Nishimura; Hana Antonicka; Catherine Brunel-Guitton; Jeremy Schwartzentruber; Somayyeh Fahiminiya; Jacek Majewski; Denis Faubert; Elsebet Ostergaard; Jan A.M. Smeitink; Eric A. Shoubridge

Protein synthesis in mitochondria is initiated by formylmethionyl-tRNA(Met) (fMet-tRNA(Met)), which requires the activity of the enzyme MTFMT to formylate the methionyl group. We investigated the molecular consequences of mutations in MTFMT in patients with Leigh syndrome or cardiomyopathy. All patients studied were compound heterozygotes. Levels of MTFMT in patient fibroblasts were almost undetectable by immunoblot analysis, and BN-PAGE analysis showed a combined oxidative phosphorylation (OXPHOS) assembly defect involving complexes I, IV and V. The synthesis of only a subset of mitochondrial polypeptides (ND5, ND4, ND1, COXII) was decreased, whereas all others were translated at normal or even increased rates. Expression of the wild-type cDNA rescued the biochemical phenotype when MTFMT was expressed near control levels, but overexpression produced a dominant-negative phenotype, completely abrogating assembly of the OXPHOS complexes, suggesting that MTFMT activity must be tightly regulated. fMet-tRNA(Met) was almost undetectable in control cells and absent in patient cells by high-resolution northern blot analysis, but accumulated in cells overexpressing MTFMT. Newly synthesized COXI was under-represented in complex IV immunoprecipitates from patient fibroblasts, and two-dimensional BN-PAGE analysis of newly synthesized mitochondrial translation products showed an accumulation of free COXI. Quantitative mass spectrophotometry of an N-terminal COXI peptide showed that the ratio of formylated to unmodified N-termini in the assembled complex IV was ∼350:1 in controls and 4:1 in patient cells. These results show that mitochondrial protein synthesis can occur with inefficient formylation of methionyl-tRNA(Met), but that assembly of complex IV is impaired if the COXI N-terminus is not formylated.


Molecular Genetics and Metabolism | 2009

Enzyme replacement therapy in pediatric patients with Gaucher disease: What should we use as maintenance dosage?

Catherine Brunel-Guitton; Georges-Etienne Rivard; Jacques Galipeau; Nathalie Alos; Marie-Claude Miron; Roxane Therrien; Grant A. Mitchell; Guy Lapierre; Marie Lambert

INTRODUCTION No consensus exists on the minimal dose of enzyme replacement therapy (ERT) effective to maintain therapeutic goals in pediatric Gaucher patients. OBJECTIVE Evaluate the efficacy of low dosage ERT to maintain treatment goals. RESULTS Six patients had a maintenance dose of 30-35U/kg/month. All patients, with the exception of one L444P/L444P homozygote, maintained therapeutic goals. DISCUSSION A low maintenance dose may be adequate in most pediatric patients. L444P homozygotes may require a higher maintenance dosage.


Molecular genetics and metabolism reports | 2017

Atypical juvenile presentation of GM2 gangliosidosis AB in a patient compound-heterozygote for c.259G > T and c.164C > T mutations in the GM2A gene ☆

Carla Martins; Catherine Brunel-Guitton; Anne Lortie; Carlos R. Morales; Grant A. Mitchell; Alexey V. Pshezhetsky

GM2-gangliosidosis, AB variant is an extremely rare autosomal recessive inherited disorder caused by mutations in the GM2A gene that encodes GM2 ganglioside activator protein (GM2AP). GM2AP is necessary for solubilisation of GM2 ganglioside in endolysosomes and its presentation to β-hexosaminidase A. Conversely GM2AP deficiency impairs lysosomal catabolism of GM2 ganglioside, leading to its storage in cells and tissues. We describe a 9-year-old child with an unusual juvenile clinical onset of GM2-gangliosidosis AB. At the age of 3 years he presented with global developmental delay, progressive epilepsy, intellectual disability, axial hypertonia, spasticity, seizures and ataxia, but without the macular cherry-red spots typical for GM2 gangliosidosis. Brain MRI detected a rapid onset of diffuse atrophy, whereas whole exome sequencing showed that the patient is a compound heterozygote for two mutations in GM2A: a novel nonsense mutation, c.259G > T (p.E87X) and a missense mutation c.164C > T (p.P55L) that was recently identified in homozygosity in patients of a Saudi family with a progressive chorea-dementia syndrome. Western blot analysis showed an absence of GM2AP in cultured fibroblasts from the patient, suggesting that both mutations interfere with the synthesis and/or folding of the protein. Finally, impaired catabolism of GM2 ganglioside in the patients fibroblasts was demonstrated by metabolic labeling with fluorescently labeled GM1 ganglioside and by immunohistochemistry with anti-GM2 and anti-GM3 antibodies. Our observation expands the molecular and clinical spectrum of molecular defects linked to GM2-gangliosidosis and suggests novel diagnostic approach by whole exome sequencing and perhaps ganglioside analysis in cultured patients cells.


Molecular genetics and metabolism reports | 2015

LPIN1 deficiency with severe recurrent rhabdomyolysis and persistent elevation of creatine kinase levels due to chromosome 2 maternal isodisomy

I.A. Meijer; F. Sasarman; C. Maftei; Elsa Rossignol; Michel Vanasse; P. Major; Grant A. Mitchell; Catherine Brunel-Guitton

Fatty acid oxidation disorders and lipin-1 deficiency are the commonest genetic causes of rhabdomyolysis in children. We describe a lipin-1-deficient boy with recurrent, severe rhabdomyolytic episodes from the age of 4 years. Analysis of the LPIN1 gene that encodes lipin-1 revealed a novel homozygous frameshift mutation in exon 9, c.1381delC (p.Leu461SerfsX47), and complete uniparental isodisomy of maternal chromosome 2. This mutation is predicted to cause complete lipin-1 deficiency. The patient had six rhabdomyolytic crises, with creatine kinase (CK) levels up to 300,000 U/L (normal, 30 to 200). Plasma CK remained elevated between crises. A treatment protocol was instituted, with early aggressive monitoring, hydration, electrolyte replacement and high caloric, high carbohydrate intake. The patient received dexamethasone during two crises, which was well-tolerated and in these episodes, peak CK values were lower than in preceding episodes. Studies of anti-inflammatory therapy may be indicated in lipin-1 deficiency.


The Journal of Pediatrics | 2017

Premature Ovarian Failure in French Canadian Leigh Syndrome

Chiraz Ghaddhab; Charles Morin; Catherine Brunel-Guitton; Grant A. Mitchell; Guy Van Vliet; Céline Huot

In all surviving girls with Leigh syndrome, French Canadian variety, a mitochondrial disease, we detected premature ovarian failure, manifested as absent or arrested breast development, lack of menarche, high follicle-stimulating hormone, a prepubertal uterus, and small ovaries. Pubertal onset and progression should be evaluated in girls with mitochondrial diseases.


Archive | 2017

The Québec NTBC Study

Fernando Alvarez; Suzanne Atkinson; Manon Bouchard; Catherine Brunel-Guitton; Daniela Buhas; Jean-François Bussières; Josée Dubois; Daphna Fenyves; Paul Goodyer; Martyne Gosselin; Ugur Halac; Patrick Labbé; Rachel Laframboise; Bruno Maranda; Serge Melançon; Aicha Merouani; Grant A. Mitchell; John Mitchell; Guy Parizeault; Luc Pelletier; Véronique Phan; Jean-François Turcotte

In this chapter we describe the current Quebec NTBC Study protocol. Quebecs unique characteristics have influenced the development of the protocol, including a high prevalence of hepatorenal tyrosinemia (HT1), universal newborn screening for HT1, availability of treatment with nitisinone (NTBC) and special diet, a large territory, where HT1 treatment is coordinated by a small number of centers. Screened newborns are seen within 3 weeks of birth. Patients with liver dysfunction (prolonged prothrombin time and/or international normalized ratio (INR) provide sensitive, rapidly available indicators) are treated by NTBC and special diet. The specific diagnosis is confirmed by diagnostic testing for succinylacetone (SA) in plasma and urine samples obtained before treatment. After an initial period of frequent surveillance, stable patients are followed every 3 months by assay of plasma amino acids and NTBC and plasma and urine SA. Abdominal ultrasound is done every 6 months. Patients have an annual visit to the coordinating center that includes multidisciplinary evaluations in metabolic genetics, hepatology, imaging (for abdominal ultrasound and magnetic resonance imaging) and other specialties as necessary. If hepatocellular carcinoma is suspected by imaging and/or because of progressive elevation of alphafetoprotein, liver transplantation is discussed. To date, no patient in whom treatment was started before 1 month of age has developed hepatocellular carcinoma, after surveillance for up to 20 years in some. This patient group is the largest in the world that has been treated rapidly following newborn screening. The protocol continues to evolve to adapt to the challenges of long term surveillance.

Collaboration


Dive into the Catherine Brunel-Guitton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elsa Rossignol

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Alina Levtova

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Bruno Maranda

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula J. Waters

Centre Hospitalier Universitaire de Sherbrooke

View shared research outputs
Researchain Logo
Decentralizing Knowledge