Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Curie is active.

Publication


Featured researches published by Catherine Curie.


The Plant Cell | 2002

IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth

Grégory Vert; Natasha Grotz; Fabienne Dédaldéchamp; Frédéric Gaymard; Mary Lou Guerinot; Jean-François Briat; Catherine Curie

Plants are the principal source of iron in most diets, yet iron availability often limits plant growth. In response to iron deficiency, Arabidopsis roots induce the expression of the divalent cation transporter IRT1. Here, we present genetic evidence that IRT1 is essential for the uptake of iron from the soil. An Arabidopsis knockout mutant in IRT1 is chlorotic and has a severe growth defect in soil, leading to death. This defect is rescued by the exogenous application of iron. The mutant plants do not take up iron and fail to accumulate other divalent cations in low-iron conditions. IRT1–green fluorescent protein fusion, transiently expressed in culture cells, localized to the plasma membrane. We also show, through promoter::β-glucuronidase analysis and in situ hybridization, that IRT1 is expressed in the external cell layers of the root, specifically in response to iron starvation. These results clearly demonstrate that IRT1 is the major transporter responsible for high-affinity metal uptake under iron deficiency.


Nature | 2001

Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake.

Catherine Curie; Zivile Panaviene; Clarisse Loulergue; Stephen L. Dellaporta; Jean-François Briat; Elsbeth L. Walker

Frequently, crop plants do not take up adequate amounts of iron from the soil, leading to chlorosis, poor yield and decreased nutritional quality. Extremely limited soil bioavailability of iron has led plants to evolve two distinct uptake strategies: chelation, which is used by the worlds principal grain crops; and reduction, which is used by other plant groups. The chelation strategy involves extrusion of low-molecular-mass secondary amino acids (mugineic acids) known as ‘phytosiderophores’, which chelate sparingly soluble iron. The Fe(iii)-phytosiderophore complex is then taken up by an unknown transporter at the root surface. The maize yellow stripe1 (ys1) mutant is deficient in Fe(iii)-phytosiderophore uptake, therefore YS1 has been suggested to be the Fe(iii)-phytosiderophore transporter. Here we show that ys1 is a membrane protein that mediates iron uptake. Expression of YS1 in a yeast iron uptake mutant restores growth specifically on Fe(iii)-phytosiderophore media. Under iron-deficient conditions, ys1 messenger RNA levels increase in both roots and shoots. Cloning of ys1 is an important step in understanding iron uptake in grasses, and has implications for mechanisms controlling iron homeostasis in all plants.


Annals of Botany | 2009

Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters

Catherine Curie; Gaëlle Cassin; Daniel Couch; Fanchon Divol; Kyoko Higuchi; Marie Le Jean; Julie Misson; Adam Schikora; Pierre Czernic; Stéphane Mari

Background Since the identification of the genes controlling the root acquisition of iron (Fe), the control of inter- and intracellular distribution has become an important challenge in understanding metal homeostasis. The identification of the yellow stripe-like (YSL) transporter family has paved the way to decipher the mechanisms of long-distance transport of Fe. Scope Once in the plant, Fe will systematically react with organic ligands whose identity is poorly known so far. Among potential ligands, nicotianamine has been identified as an important molecule for the circulation and delivery of metals since it participates in the loading of copper (Cu) and nickel in xylem and prevents Fe precipitation in leaves. Nicotianamine is a precursor of phytosiderophores, which are high-affinity Fe ligands exclusively synthesized by Poaceae species and excreted by roots for the chelation and acquisition of Fe. Maize YS1 is the founding member of a family of membrane transporters called YS1-like (YSL), which functions in root Fe-phytosiderophore uptake from the soil. Next to this well-known Fe acquisition role, most of the other YSL family members are likely to function in plant-wide distribution of metals since (a) they are produced in vascular tissues throughout the plant and (b) they are found in non-Poaceae species that do not synthesize phytosiderophores. The hypothesized activity as Fe-nicotianamine transporters of several YSL members has been demonstrated experimentally by heterologous expression in yeast or by electrophysiology in Xenopus oocytes but, despite numerous attempts, proof of the arabidopsis YSL substrate specificity is still lacking. Reverse genetics, however, has revealed a role for AtYSL members in the remobilization of Cu and zinc from senescing leaves, in the formation of pollen and in the Fe, zinc and Cu loading of seeds. Conclusions Preliminary data on the YSL family of transporters clearly argues in favour of its role in the long-distance transport of metals through and between vascular tissues to eventually support gametogenesis and embryo development.


The EMBO Journal | 2005

Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron

Viviane Lanquar; Françoise Lelièvre; Susanne Bolte; Cécile Hamès; Carine Alcon; Dieter Neumann; Gérard Vansuyt; Catherine Curie; Astrid Schröder; Ute Krämer; Hélène Barbier-Brygoo; Sébastien Thomine

Iron (Fe) is necessary for all living cells, but its bioavailability is often limited. Fe deficiency limits agriculture in many areas and affects over a billion human beings worldwide. In mammals, NRAMP2/DMT1/DCT1 was identified as a major pathway for Fe acquisition and recycling. In plants, AtNRAMP3 and AtNRAMP4 are induced under Fe deficiency. The similitude of AtNRAMP3 and AtNRAMP4 expression patterns and their common targeting to the vacuole, together with the lack of obvious phenotype in nramp3‐1 and nramp4‐1 single knockout mutants, suggested a functional redundancy. Indeed, the germination of nramp3 nramp4 double mutants is arrested under low Fe nutrition and fully rescued by high Fe supply. Mutant seeds have wild type Fe content, but fail to retrieve Fe from the vacuolar globoids. Our work thus identifies for the first time the vacuole as an essential compartment for Fe storage in seeds. Our data indicate that mobilization of vacuolar Fe stores by AtNRAMP3 and AtNRAMP4 is crucial to support Arabidopsis early development until efficient systems for Fe acquisition from the soil take over.


Biochemical Journal | 2000

Involvement of NRAMP1 from Arabidopsis thaliana in iron transport.

Catherine Curie; J M Alonso; M. Le Jean; J R Ecker; Jean-François Briat

Nramp genes code for a widely distributed class of proteins involved in a variety of processes, ranging from the control of susceptibility to bacterial infection in mammalian cells and taste behaviour in Drosophila to manganese uptake in yeast. Some of the NRAMP proteins in mammals and in yeast are capable of transporting metal ions, including iron. In plants, iron transport was shown to require a reduction/Fe(II) transport system. In Arabidopsis thaliana this process involves the IRT1 and Fro2 genes. Here we report the sequence of five NRAMP proteins from A. thaliana. Sequence comparison suggests that there are two classes of NRAMP proteins in plants: A. thaliana (At) NRAMP1 and Oriza sativa (Os) NRAMP1 and 3 (two rice isologues) represent one class, and AtNRAMP2-5 and OsNRAMP2 the other. AtNramp1 and OsNramp1 are able to complement the fet3fet4 yeast mutant defective both in low- and high-affinity iron transports, whereas AtNramp2 and OsNramp2 fail to do so. In addition, AtNramp1 transcript, but not AtNramp2 transcript, accumulates in response to iron deficiency in roots but not in leaves. Finally, overexpression of AtNramp1 in transgenic A. thaliana plants leads to an increase in plant resistance to toxic iron concentration. Taken together, these results demonstrate that AtNramp1 participates in the control of iron homoeostasis in plants.


The Plant Cell | 2010

High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions

Rémy Cailliatte; Adam Schikora; Jean-François Briat; Stéphane Mari; Catherine Curie

This study shows that, in order to acquire manganese when concentrations in the soil are limited, Arabidopsis relies on a root high-affinity manganese uptake system catalyzed by the metal transporter NRAMP1. The finding that overexpression of NRAMP1 produces large plants with increased manganese content paves the way for the biotechnological engineering of plants with improved biomass production. In contrast with many other essential metals, the mechanisms of Mn acquisition in higher eukaryotes are seldom studied and poorly understood. We show here that Arabidopsis thaliana relies on a high-affinity uptake system to acquire Mn from the soil in conditions of low Mn availability and that this activity is catalyzed by the divalent metal transporter NRAMP1 (for Natural Resistance Associated Macrophage Protein 1). The nramp1-1 loss-of-function mutant grows poorly, contains less Mn than the wild type, and fails to take up Mn in conditions of Mn limitation, thus demonstrating that NRAMP1 is the major high-affinity Mn transporter in Arabidopsis. Based on confocal microscopy observation of an NRAMP1-green fluorescent protein fusion, we established that NRAMP1 is localized to the plasma membrane. Consistent with its function in Mn acquisition from the soil, NRAMP1 expression is restricted to the root and stimulated by Mn deficiency. Finally, we show that NRAMP1 restores the capacity of the iron-regulated transporter1 mutant to take up iron and cobalt, indicating that NRAMP1 has a broad selectivity in vivo. The role of transporters of the NRAMP family is well established in higher eukaryotes for iron but has been controversial for Mn. This study demonstrates that NRAMP1 is a physiological manganese transporter in Arabidopsis.


Plant Physiology | 2003

Dual Regulation of the Arabidopsis High-Affinity Root Iron Uptake System by Local and Long-Distance Signals

Grégory Vert; Jean-François Briat; Catherine Curie

Regulation of the root high-affinity iron uptake system by whole-plant signals was investigated at the molecular level in Arabidopsis, through monitoring FRO2 and IRT1 gene expression. These two genes encode the root ferric-chelate reductase and the high-affinity iron transporter, respectively, involved in the iron deficiency-induced uptake system. Recovery from iron-deficient conditions and modulation of apoplastic iron pools indicate that iron itself plays a major role in the regulation of root iron deficiency responses at the mRNA and protein levels. Split-root experiments show that the expression of IRT1 and FRO2 is controlled both by a local induction from the root iron pool and through a systemic pathway involving a shoot-borne signal, both signals being integrated to tightly control production of the root iron uptake proteins. We also show that IRT1 and FRO2 are expressed during the day and down-regulated at night and that this additional control is overruled by iron starvation, indicating that the nutritional status prevails on the diurnal regulation. Our work suggests, for the first time to our knowledge, that like in grasses, the root iron acquisition in strategy I plants may also be under diurnal regulation. On the basis of the new molecular insights provided in this study and given the strict coregulation of IRT1 and FRO2 observed, we present a model of local and long-distance regulation of the root iron uptake system in Arabidopsis.


Molecular Genetics and Genomics | 1989

The gene family encoding the Arabidopsis thaliana translation elongation factor EF-1α: molecular cloning, characterization and expression

Michèle Axelos; Claude Bardet; Thierry Liboz; Agathe Le Van Thai; Catherine Curie; Bernard Lescure

SummaryThe gene family encoding the Arabidopsis thaliana translation elongation factor (EF-1α) was analysed. This family contains four genes (A1-A4) organized in a similar manner in different varieties of Arabidopsis. Based upon both their physical separation and a comparison of their sequences, it is suggested that the A4 gene and the A1, A2, and A3 genes constitute two distinct subfamilies within the genome. By introducing chimaeric gene constructs into Arabidopsis cells, we showed that the Al gene promoter mediates a transient expression about twofold higher than that obtained using the CaMV 35 S promoter. This expression depends on a 348 by DNA fragment extending from −982 to −634 by upstream of the initiation codon. This element contains a characteristic telomeric sequence (AACCCTAA) which is also found in the promoters of the A2 and A4 genes as well as in the promoters of the Drosophila EF-1α F1 gene and of several highly expressed plant genes.


Plant Journal | 2008

Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.

Mathilde Séguéla; Jean-François Briat; Grégory Vert; Catherine Curie

Plants display a number of biochemical and developmental responses to low iron availability in order to increase iron uptake from the soil. The ferric-chelate reductase FRO2 and the ferrous iron transporter IRT1 control iron entry from the soil into the root epidermis. In Arabidopsis, expression of IRT1 and FRO2 is tightly controlled to maintain iron homeostasis, and involves local and long-distance signals, as well as transcriptional and post-transcriptional events. FIT encodes a putative basic helix-loop-helix (bHLH) transcription factor that regulates iron uptake responses in Arabidopsis. Here, we uncover a new regulation of the root iron uptake genes. We show that IRT1, FRO2 and FIT are repressed by the exogenous addition of cytokinins (CKs), and that this repression acts at the level of transcript accumulation, and depends on the AHK3 and CRE1 CK receptors. The CKs and iron-deficiency signals act through distinct pathways to regulate the soil iron uptake genes, as (i) CK repression is independent of the iron status, (ii) IRT1 and FRO2 downregulation is unchanged in a fit loss-of-function mutant, indicating that FIT does not mediate CK repression, and (iii) the iron-regulated genes AtNRAMP3 and AtNRAMP4 are not downregulated by CKs. We show that root growth-inhibitory conditions, such as abiotic stresses (mannitol, NaCl) and hormonal treatments (auxin, abscissic acid), repress the iron starvation response genes. We propose that CKs control the root iron uptake machinery through a root growth dependent pathway in order to adapt nutrient uptake to the demand of the plant.


Biochemical Journal | 2009

The NRAMP6 metal transporter contributes to cadmium toxicity

Rémy Cailliatte; Bruno Lapeyre; Jean-François Briat; Stéphane Mari; Catherine Curie

NRAMP (natural resistance-associated macrophage protein) homologues are evolutionarily conserved bivalent metal transporters. In Arabidopsis, AtNRAMP3 and AtNRAMP4 play a key role in iron nutrition of the germinating plantlet by remobilizing vacuolar iron stores. In the present paper we describe the molecular and physiological characterization of AtNRAMP6. AtNRAMP6 is predominantly expressed in the dry seed embryo and to a lesser extent in aerial parts. Its promoter activity is found diffusely distributed in cotyledons and hypocotyl, as well as in the vascular tissue region of leaf and flower. We show that the AtNRAMP6 transcript coexists with a partially spliced isoform in all shoot cell types tested. When expressed in yeast, AtNRAMP6, but not its misspliced derivative, increased sensitivity to cadmium without affecting cadmium content in the cell. Likewise, Arabidopsis transgenic plants overexpressing AtNRAMP6 were hypersensitive to cadmium, although plant cadmium content remained unchanged. Consistently, a null allele of AtNRAMP6, named nramp6-1, was more tolerant to cadmium toxicity, a phenotype that was reverted by expressing AtNRAMP6 in the mutant background. We used an AtNRAMP6::HA (where HA is haemagglutinin) fusion, shown to be functional in yeast, to demonstrate through immunoblot analysis of membrane fractions and immunofluorescence localization that, in yeast cells, AtNRAMP6 is targeted to a vesicular-shaped endomembrane compartment distinct from the vacuole or mitochondria. We therefore propose that AtNRAMP6 functions as an intracellular metal transporter, whose presence, when modified, is likely to affect distribution/availability of cadmium within the cell.

Collaboration


Dive into the Catherine Curie's collaboration.

Top Co-Authors

Avatar

Jean-François Briat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Stéphane Mari

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Grégory Vert

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Geneviève Conejero

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Adam Schikora

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pierre Czernic

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Michèle Axelos

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Fanchon Divol

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Hannetz Roschzttardtz

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Loren Castaings

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge