Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine E. D. Rees is active.

Publication


Featured researches published by Catherine E. D. Rees.


Gene | 1992

A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia

Nigel J. Bainton; Barrie W. Bycroft; Siri Ram Chhabra; Paul Stead; Linden Gledhill; Philip J. Hill; Catherine E. D. Rees; Michael K. Winson; George P. C. Salmond; Gordon S. A. B. Stewart; Paul Williams

Micro-organisms have evolved complex and diverse mechanisms to sense environmental changes. Activation of a sensory mechanism typically leads to alterations in gene expression facilitating an adaptive response. This may take several forms, but many are mediated by response-regulator proteins. The luxR-encoded protein (LuxR) has previously been characterised as a member of the response-regulator superfamily and is known to respond to the small diffusible autoinducer signal molecule N-(beta-ketocaproyl) homoserine lactone (KHL). Observed previously in only a few marine bacteria, we now report that KHL is in fact produced by a diverse group of terrestrial bacteria. In one of these (Erwinia carotovora), we show that it acts as a molecular control signal for the expression of genes controlling carbapenem antibiotic biosynthesis. This represents the first substantive evidence to support the previous postulate that the lux autoinducer, KHL, is widely involved in bacterial signalling.


Molecular Microbiology | 1993

A novel strategy for the isolation of luxl homologues: evidence for the widespread distribution of a LuxR:Luxl superfamily in enteric bacteria

Simon Swift; Michael K. Winson; P. F. Chan; Nigel J. Bainton; M. Birdsall; Philip J. Reeves; Catherine E. D. Rees; Siri Ram Chhabra; Philip J. Hill; John P. Throup; Barrie W. Bycroft; George P. C. Salmond; Paul Williams; Gordon S. A. B. Stewart

The pheromone N‐(3‐oxohexanoyl)‐L‐homoserine lactone (OHHL) regulates expression of bioluminescence in the marine bacterium Vibrio fischeri, the production of carbapenem antibiotic in Erwinia carotovora and exoenzymes in both E. carotovora and Pseudomonas aeruginosa. A characteristic feature of this regulatory mechanism in V. fischeri is that it is cell density‐dependent, reflecting the need to accumulate sufficient pheromone to trigger the induction of gene expression. Using a lux plasmid‐based bioluminescent sensor for OHHL, pheromone production by E. carotovora, Enterobacter agglomerans, Hafnia alvei, Rahnella aquatilis and Serratia marcescens has been demonstrated and shown also to be cell density‐dependent. Production of OHHL implies the presence in these bacteria of a gene equivalent to luxl. Chromosomal banks from all five enteric bacteria have yielded clones capable of eliciting OHHL production when expressed in Escherichia coli. The luxl homologue from both E. carotovora (carl) and E. agglomerans (eagl) were characterized at the DNA sequence level and the deduced protein sequences have only 25% identity with the V. fischeri Luxl. Despite this, carl, eagl and luxl are shown to be biologically equivalent. An insertion mutant of eagl demonstrates that this gene is essential for OHHL production in E. agglomerans.


Applied and Environmental Microbiology | 2003

Application of Host-Specific Bacteriophages to the Surface of Chicken Skin Leads to a Reduction in Recovery of Campylobacter jejuni

Robert J. Atterbury; Phillippa L. Connerton; Christine E. R. Dodd; Catherine E. D. Rees; Ian F. Connerton

ABSTRACT Retail poultry products are widely purported as the major infection vehicle for human campylobacteriosis. Numerous intervention strategies have sought to reduce Campylobacter contamination on broiler carcasses in the abattoir. This study reports the efficacy of bacteriophage in reducing the number of recoverable Campylobacter jejuni cells on artificially contaminated chicken skin.


Infection and Immunity | 2001

agr Expression Precedes Escape of Internalized Staphylococcus aureus from the Host Endosome

Saara Qazi; Emilie Counil; Julie A. Morrissey; Catherine E. D. Rees; Alan Cockayne; Klaus Winzer; Weng C. Chan; Paul Williams; Philip J. Hill

ABSTRACT Staphylococcus aureus is a versatile pathogen capable of causing life-threatening infections. Many of its cell wall and exoproduct virulence determinants are controlled via the accessory gene regulator (agr). Although considered primarily as an extracellular pathogen, it is now recognized that S. aureus can be internalized by epithelial and endothelial cells. Traditional experimental approaches to investigate bacterial internalization are extremely time-consuming and notoriously irreproducible. We present here a new reporter gene method to assess intracellular growth of S. aureus in MAC-T cells that utilizes a gfp-luxABCDE reporter operon under the control of the Bacillus megateriumxylA promoter, which in S. aureus is expressed in a growth-dependent manner. This facilitates assessment of the growth of internalized bacteria in a nondestructive assay. The dual gfp-lux reporter cassette was also evaluated as a reporter of agr expression and used to monitor the temporal induction of agr during the MAC-T internalization process. The data obtained suggest thatagr induction occurs prior to endosomal lysis and thatagr-regulated exoproteins appear to be required prior to the release and replication of S. aureus within the infected MAC-T cells.


Applied and Environmental Microbiology | 2000

Effect of Flagella on Initial Attachment of Listeria monocytogenes to Stainless Steel

Savitri Vatanyoopaisarn; Aisha Nazli; Christine E. R. Dodd; Catherine E. D. Rees; W.M. Waites

ABSTRACT At 22°C a flagellin mutant of Listeria monocytogeneswas found to attach to stainless steel at levels 10-fold lower than wild-type cells, even under conditions preventing active motility. At 37°C, when flagella are not produced, attachment of both strains was identical. Therefore, flagella per se facilitate the early stage of attachment.


Applied and Environmental Microbiology | 2000

Development of a single-reaction multiplex PCR toxin typing assay for Staphylococcus aureus strains.

Naresh K. Sharma; Catherine E. D. Rees; Christine E. R. Dodd

ABSTRACT We describe here the development of a single-reaction multiplex PCR assay for the enterotoxin genes from Staphylococcus aureusthat utilizes a universal toxin gene primer in combination with toxin-specific primers to amplify characteristic toxin gene products. In combination with a new DNA purification method, the assay can detect enterotoxin genes A to E from a pure culture within 3 to 4 h. The test was used to characterize a diverse set of environmental S. aureus isolates, and a 99% correlation with toxin typing using standard immunological tests was found. The design of the assay allows it to be extended to include both newly characterized and as-yet-unknown toxin genes.


Applied and Environmental Microbiology | 2003

Isolation and Characterization of Campylobacter Bacteriophages from Retail Poultry

Robert J. Atterbury; Phillippa L. Connerton; Christine E. R. Dodd; Catherine E. D. Rees; Ian F. Connerton

ABSTRACT The ability of phages to survive processing is an important aspect of their potential use in the biocontrol of Campylobacter in poultry production. To this end, we have developed a procedure to recover Campylobacter bacteriophages from chilled and frozen retail poultry and have validated the sensitivity of the method by using a characterized Campylobacter phage (i.e., NCTC 12674). By using this method, we have shown that Campylobacter phages can survive on retail chicken under commercial storage conditions. Retail chicken portions purchased in the United Kingdom were screened for the presence of endogenous Campylobacter phages. Thirty-four Campylobacter bacteriophages were isolated from 300 chilled retail chicken portions, but none could be recovered from 150 frozen chicken portions. The phage isolates were characterized according to their lytic profiles, morphology, and genome size. The free-range products were significantly more likely to harbor phages (P < 0.001 by single-factor analysis of variance) than were standard or economy products. This study demonstrates that Campylobacter bacteriophages, along with their hosts, can survive commercial poultry processing procedures and that the phages exhibited a wide range of recovery rates from chicken skin stored at 4°C.


Letters in Applied Microbiology | 2010

Bacteriophage applications: where are we now?

A.B. Monk; Catherine E. D. Rees; Paul A. Barrow; S. Hagens; D.R. Harper

Bacteriophages are bacterial viruses and have been used for almost a century as antimicrobial agents. In the West, their use diminished when chemical antibiotics were introduced, but they remain a common therapeutic approach in parts of eastern Europe. Increasing antibiotic resistance in bacteria has driven the demand for novel therapies to control infections and led to the replacement of antibiotics in animal husbandry. Alongside this, increased pressure to improve food safety has created a need for faster detection of pathogenic bacteria. Hence, there has been a resurgence of interest in bacteriophage applications, and this has encouraged the emergence of a large number of biotech companies hoping to commercialize their use. Research in Europe and the United States has increased steadily, leading to the development of a range of applications for bacteriophage agents for the healthcare, veterinary and agricultural sectors. This article will attempt to answer the question of whether bacteriophages are now delivering on their potential.


Applied and Environmental Microbiology | 2004

Longitudinal Study of Campylobacter jejuni Bacteriophages and Their Hosts from Broiler Chickens

Phillippa L. Connerton; C. M. Loc Carrillo; C. Swift; E. Dillon; Andrew E Scott; Catherine E. D. Rees; Christine E. R. Dodd; J.A. Frost; Ian F. Connerton

ABSTRACT A longitudinal study of bacteriophages and their hosts was carried out at a broiler house that had been identified as having a population of Campylobacter-specific bacteriophages. Cloacal and excreta samples were collected from three successive broiler flocks reared in the same barn. Campylobacter jejuni was isolated from each flock, whereas bacteriophages could be isolated from flocks 1 and 2 but were not isolated from flock 3. The bacteriophages isolated from flocks 1 and 2 were closely related to each other in terms of host range, morphology, genome size, and genetic content. All Campylobacter isolates from flock 1 were genotypically indistinguishable by pulsed-field gel electrophoresis (PFGE). PFGE and multilocus sequence typing indicated that this C. jejuni type was maintained from flock 1 to flock 2 but was largely superseded by three genetically distinct C. jejuni types insensitive to the resident bacteriophages. All isolates from the third batch of birds were insensitive to bacteriophages and genotypically distinct. These results are significant because this is the first study of an environmental population of C. jejuni bacteriophages and their influence on the Campylobacter populations of broiler house chickens. The role of developing bacteriophage resistance was investigated as this is a possible obstacle to the use of bacteriophage therapy to reduce the numbers of campylobacters in chickens. In this broiler house succession was largely due to incursion of new genotypes rather than to de novo development of resistance.


Applied and Environmental Microbiology | 2007

Development of a new, combined rapid method using phage and PCR for detection and identification of viable Mycobacterium paratuberculosis bacteria within 48 hours.

Emma Stanley; Richard J. Mole; Rebecca J. Smith; Sarah M. Glenn; Michael R. Barer; M. R. McGowan; Catherine E. D. Rees

ABSTRACT The FASTPlaqueTB assay is an established diagnostic aid for the rapid detection of Mycobacterium tuberculosis from human sputum samples. Using the FASTPlaqueTB assay reagents, viable Mycobacterium avium subsp. paratuberculosis cells were detected as phage plaques in just 24 h. The bacteriophage used does not infect M. avium subsp. paratuberculosis alone, so to add specificity to this assay, a PCR-based identification method was introduced to amplify M. avium subsp. paratuberculosis-specific sequences from the DNA of the mycobacterial cell detected by the phage. To give further diagnostic information, a multiplex PCR method was developed to allow simultaneous amplification of either M. avium subsp. paratuberculosis or M. tuberculosis complex-specific sequences from plaque samples. Combining the plaque PCR technique with the phage-based detection assay allowed the rapid and specific detection of viable M. avium subsp. paratuberculosis in milk samples in just 48 h.

Collaboration


Dive into the Catherine E. D. Rees's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Swift

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Philip J. Hill

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

George Botsaris

Cyprus University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Williams

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge