Catherine W.-H. Zhang
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catherine W.-H. Zhang.
Nature Structural & Molecular Biology | 2013
Xiaoai Zhang; Guangwen Lu; Jianxun Qi; Yan Li; Yan He; Xiang Xu; Jia Shi; Catherine W.-H. Zhang; Jinghua Yan; George F. Gao
Measles virus is a major public health concern worldwide. Three measles virus cell receptors have been identified so far, and the structures of the first two in complex with measles virus hemagglutinin (MV-H) have been reported. Nectin-4 is the most recently identified receptor in epithelial cells, and its binding mode to MV-H remains elusive. In this study, we solved the structure of the membrane-distal domain of human nectin-4 in complex with MV-H. The structure shows that nectin-4 binds the MV-H β4-β5 groove exclusively via its N-terminal IgV domain; the contact interface is dominated by hydrophobic interactions. The binding site in MV-H for nectin-4 also overlaps extensively with those of the other two receptors. Finally, a hydrophobic pocket centered in the β4-β5 groove is involved in binding to all three identified measles virus receptors, representing a potential target for antiviral drugs.
Journal of General Virology | 2002
Ming Yu; Enxiu Wang; Youfang Liu; Dianjun Cao; Ningyi Jin; Catherine W.-H. Zhang; Mark Bartlam; Zihe Rao; Po Tien; George F. Gao
Paramyxoviruses may adopt a similar fusion mechanism to other enveloped viruses, in which an anti-parallel six-helix bundle structure is formed post-fusion in the heptad repeat (HR) regions of the envelope fusion protein. In order to understand the fusion mechanism and identify fusion inhibitors of Newcastle disease virus (NDV), a member of the Paramyxoviridae family, we have developed an E. coli system that separately expresses the F protein HR1 and HR2 regions as GST fusion proteins. The purified cleaved HR1 and HR2 have subsequently been assembled into a stable six-helix bundle heterotrimer complex. Furthermore, both the GST fusion protein and the cleaved HR2 show virus-cell fusion inhibition activity (IC(50) of 1.07-2.93 microM). The solubility of the GST-HR2 fusion protein is much higher than that of the corresponding peptide. Hence this provides a plausible method for large-scale production of HR peptides as virus fusion inhibitors.
Biochemical and Biophysical Research Communications | 2002
Jieqing Zhu; Catherine W.-H. Zhang; Yipeng Qi; Po Tien; George F. Gao
Recent studies have shown that paramyxovirus might adopt a similar molecular mechanism of virus entry and fusion in which the attachment glycoprotein binds receptor/s and triggers the conformational changes of the fusion protein. There are two conserved regions of heptad repeat (HR1 and HR2) in the fusion protein and they were shown with fusion-inhibition effects in many paramyxoviruses, including measles virus. They also appear to show characteristic structure in the fusion core: the HR1/HR2 forms stable six-helix coiled-coil centered by HR1 and is surrounded by HR2 (trimer of HR1/HR2), which represents the post-fusion conformational structure. In this study, we expressed the HR1 and HR2 of measles virus fusion protein as a single chain (named 2-Helix) and subsequently tested its formation of trimer. Indeed, the results do show that the HR1 and HR2 interact with each other and form stable six-helix coiled-coil bundle. This is the first member in genus Morbillivirus of family Paramyxoviridae to be confirmed with this characteristic structure and provides the basis for the HR2-inhibition effects on virus fusion/entry for measles virus.
Protein & Cell | 2018
Shuguang Tan; Kefang Liu; Yan Chai; Catherine W.-H. Zhang; Shan Gao; George F. Gao; Jianxun Qi
Blockade of PD-1/PD-L1 signaling pathway by monoclonal antibodies (MAbs) to release the anti-tumor activity of preexisting tumor specific T cell immunity has initiated a new era for tumor immunotherapy. Administration of anti-PD-1 MAbs (nivolumab and pembrolizumab) in either monotherapy or in combination with anti-CTLA-4 MAbs or traditional chemotherapy has achieved a tumor regression rate of 30%–50% in dealing with melanoma, non-small cell lung cancer, etc. (Larkin et al., 2015). The approval of anti-PD-L1 atezolizumab and avelumab by US Food and Drug Administration (FDA) since 2016 has provided additional choices in dealing with multiple tumors aside from anti-PD-1 and anti-CTLA-4 MAbs as immunotherapeutic medication. The structures of the two therapeutic anti-PD-1 MAbs, nivolumab and pembrolizumab, complexed with PD-1 have been reported which elucidated the molecular basis of MAb-based anti-PD-1 immunotherapy (Tan et al., 2016a, b; Na et al., 2017; Tan et al., 2017). Complex structures of avelumab and BMS-936559 with PD-L1 were also reported which contributes a better understanding of the molecular basis of MAb-based anti-PD-L1 checkpoint blockade therapy (Lee et al., 2016; Liu et al., 2017). In addition, two additional anti-PD-L1 MAbs are in clinics or phase III trials, atezolizumab and durvalumab. Durvalumab (MEDI4736) is a fully human IgG1 MAb targeting PD-L1 that was developed by AstraZeneca, and has been approved by US FDA very recently. Multiple Phase III clinical trials are still ongoing in non-small cell lung cancer, head and neck cancer, urothelial cancer, etc. (NCT02542293, NCT02369874, NCT02516241, etc.). A Phase Ib report demonstrated that durvalumab is well tolerated and showed promising anti-tumor efficacy in nonsmall cell lung cancer patients (Antonia et al., 2016). However, the molecular basis of durvalumab-based anti-PD-L1 reactivity and binding characteristics compared to the other three MAbs used in clinics has not yet been elucidated. In the present study, weexpressed the two-Ig-domain PD-L1 and single chain Fv fragment (scFv) of durvalumab as inclusion bodies in Escherichia coli cells. Soluble proteins were obtained by in vitro refolding, and the two refolded proteins survived well in gel filtration (Fig. S1). Subsequently, crystal screen was performed with the durvalumab-scFv/PD-L1 complex proteins, and well-diffractable crystals grew in 3.5 mol/L sodium formate, pH 7.0 (See more details in supplementary information). The complex structure of durvalumab-scFv/PD-L1 was determined by molecular replacement at a resolution of 2.3 Å (Table S1). The binding of durvalumab to PD-L1 involves both of its heavy chain (VH) and light chain (VL) (Fig. 1A). All of the three complementarity-determining regions (CDRs) of VH and CDR1 and CDR3 of VL contribute to interactions with PD-L1, leaving LCDR2without any contacts. Previous reports on the anti-PD-1MAbs revealed that the binding of theseMAb ismainly located on the loops of PD-1, i.e., the N-terminal loop of PD-1 for nivolumab interaction and the C’D loop for pembrolizumab. However, the binding of avelumab and BMS936559 is mainly located on the strands of the front-β-sheet face of PD-L1. Here, the binding of durvalumab on PD-L1 was also mainly located on the front β-sheet face which is constituted by A, G, F, C, and C’ strands of the IgV domain of PD-L1. A detailed analysis of the interactions between durvalumab and PD-L1 shows an unbiased contribution from VH and VL of durvalumab in binding to PD-L1. The A, G, and F strands of PD-L1 provide major hydrogen bond interactions with durvalumab (Fig. 1B). D26 of the A strand andR113 of the F strand of PD-L1were occupied by S30 of LCDR1 andE58 of HCDR2, respectively (Table S2). Especially, residues of the G strand (Y123, K124, and R125) provide multiple hydrogen bonds to both VH (F104 of HCDR3 and N51 nearby HCDR2) and VL (Y92 and S94 of LCDR3), which contribute major hydrogen bond interactions to durvalumab, 7 out of 10 hydrogen bonds in all (Table S2). Structural superimposition of the PD-1/PD-L1 complex (PDB: 4ZQK) and the durvalumab-scFv/PD-L1 complex was conducted to elucidate the molecular basis of durvalumabbased PD-1/PD-L1 intervention. The binding of durvalumab to PD-L1 shows a stereo clash with that of PD-1 (Fig. 1C). The binding surface of durvalumab and PD-1 on PD-L1 is highly overlapped that residues of PD-L1, which contributed major hydrogen bond interactions with PD-1 (D26, Y123, K124, and R125), were also occupied by durvalumab (Fig. 1D) (Zak et al., 2015). The competitive binding involves both VH and VL of durvalumab. Thus, the molecular basis of
Archives of Virology | 2003
Jieqing Zhu; Catherine W.-H. Zhang; Zihe Rao; Po Tien; George F. Gao
E. coli in vitro expression system. The GST-removed purified 2-Helix protein could form a stable trimer in vitro judging by gel-filtration and chemical cross-linking. CD spectra showed that the 2-Helix protein had a high percentage of α-helix and was very thermo-stable. Crystals of the 2-Helix protein preparations have been obtained in many conditions with hanging-drop diffusion method. These results indicated that Menangle virus has the common features of the fusion protein for other paramyxoviruses and should adopt a similar fusion mechanism to other members. As the HR regions of Menangle virus F protein could form stable six-helix bundle coiled coil structure, they should be used as drug target for the design of fusion inhibitors, as successfully used for other parmyxoviruses. This is especially relevant to such a newly emergent virus with zoonotic potentials.
Signal Transduction and Targeted Therapy | 2016
Shuguang Tan; Catherine W.-H. Zhang; George F. Gao
Structural immunology, focusing on structures of host immune related molecules, enables the immunologists to see what the molecules look like, and more importantly, how they work together. Antibody-based PD-1/PD-L1 blockade therapy has achieved brilliant successes in clinical applications. The recent breakthrough of the complex structures of checkpoint blockade antibodies with their counterparts, pembrolizumab with PD-1 and avelumab with PD-L1, have made it clear how these monoclonal antibodies compete the binding of PD-1/PD-L1 and function to blockade the receptor-ligand interaction. Herein, we summarize the structural findings of these two reports and look into the future for how this information would facilitate the development of more efficient PD-1/PD-L1 targeting antibodies, small molecule drugs, and other protein or non-protein inhibitors.
Oncotarget | 2017
Mengnan He; Yan Chai; Jianxun Qi; Catherine W.-H. Zhang; Zhou Tong; Yi Shi; Jinghua Yan; Shuguang Tan; George F. Gao
Monoclonal antibody based immune checkpoint blockade therapies have achieved clinical successes in management of malignant tumors. As the first monoclonal antibody targeting immune checkpoint molecules entered into clinics, the molecular basis of ipilimumab-based anti-CTLA-4 blockade has not yet been fully understood. In the present study, we report the complex structure of ipilimumab and CTLA-4. The complex structure showed similar contributions from VH and VL of ipilimumab in binding to CTLA-4 front β-sheet strands. The blockade mechanism of ipilimumab is that the strands of CTLA-4 contributing to the binding to B7-1 or B7-2 were occupied by ipilimumab and thereafter prevents the binding of B7-1 or B7-2 to CTLA-4. Though ipilimumab binds to the same epitope with tremelimumab on CTLA-4 with similar binding affinity, the higher dissociation rate of ipilimumab may indicate the dynamic binding to CTLA-4, which may affect its pharmacokinetics. The molecular basis of ipilimumab-based anti-CTLA-4 blockade and comparative study of the binding characteristics of ipilimumab and tremelimumab would shed light for the discovery of small molecular inhibitors and structure-based monoclonal antibody optimization or new biologics.Monoclonal antibody based immune checkpoint blockade therapies have achieved clinical successes in management of malignant tumors. As the first monoclonal antibody targeting immune checkpoint molecules entered into clinics, the molecular basis of ipilimumab-based anti-CTLA-4 blockade has not yet been fully understood. In the present study, we report the complex structure of ipilimumab and CTLA-4. The complex structure showed similar contributions from VH and VL of ipilimumab in binding to CTLA-4 front β-sheet strands. The blockade mechanism of ipilimumab is that the strands of CTLA-4 contributing to the binding to B7-1 or B7-2 were occupied by ipilimumab and thereafter prevents the binding of B7-1 or B7-2 to CTLA-4. Though ipilimumab binds to the same epitope with tremelimumab on CTLA-4 with similar binding affinity, the higher dissociation rate of ipilimumab may indicate the dynamic binding to CTLA-4, which may affect its pharmacokinetics. The molecular basis of ipilimumab-based anti-CTLA-4 blockade and comparative study of the binding characteristics of ipilimumab and tremelimumab would shed light for the discovery of small molecular inhibitors and structure-based monoclonal antibody optimization or new biologics.
Protein & Cell | 2016
Shuguang Tan; Danqing Chen; Kefang Liu; Mengnan He; Hao Song; Yi Shi; Jun Liu; Catherine W.-H. Zhang; Jianxun Qi; Jinghua Yan; Shan Gao; George F. Gao
Abstract Antibody-based PD-1/PD-L1 blockade therapies have taken center stage in immunotherapies for cancer, with multiple clinical successes. PD-1 signaling plays pivotal roles in tumor-driven T-cell dysfunction. In contrast to prior approaches to generate or boost tumor-specific T-cell responses, antibody-based PD-1/PD-L1 blockade targets tumor-induced T-cell defects and restores pre-existing T-cell function to modulate antitumor immunity. In this review, the fundamental knowledge on the expression regulations and inhibitory functions of PD-1 and the present understanding of antibody-based PD-1/PD-L1 blockade therapies are briefly summarized. We then focus on the recent breakthrough work concerning the structural basis of the PD-1/PD-Ls interaction and how therapeutic antibodies, pembrolizumab targeting PD-1 and avelumab targeting PD-L1, compete with the binding of PD-1/PD-L1 to interrupt the PD-1/PD-L1 interaction. We believe that this structural information will benefit the design and improvement of therapeutic antibodies targeting PD-1 signaling.
Acta Crystallographica Section D-biological Crystallography | 2003
Jieqing Zhu; Yi Ding; Feng Gao; Tinghe Wu; Catherine W.-H. Zhang; Po Tien; Zihe Rao; George F. Gao
Two heptad-repeat regions (HR1 and HR2) are highly conserved in paramyxovirus fusion proteins and form a stable helical trimer of heterodimers [(HR1-HR2)(3)] after the fusion between viral and cellular membranes. In this study, two HR regions of the fusion protein of measles virus, a member of the paramyxoviruses, were selected and overexpressed as a single chain (named 2-Helix) connected by an amino-acid linker using a GST-fusion expression system in Escherichia coli. Crystals of 2-Helix protein (GST removed) could be obtained from many conditions using the sitting- or hanging-drop vapour-diffusion method. A complete data set was collected in-house to 1.9 A resolution from a single crystal. The crystal belongs to space group P6, with unit-cell parameters a = b = 51.637, c = 67.058 A. To facilitate the crystal structure solution, SeMet-substituted 2-Helix crystals, grown under similar conditions to the native, were also obtained and diffracted X-rays to 1.8 A using synchrotron radiation.
Tuberculosis | 2017
Shuguang Tan; Nan Lin; Mingxiang Huang; Qing Wang; Yunhong Tan; Bingxi Li; Ning Zhang; Tianling Guo; Yingbin Cui; Xinchao Chen; Dongping Wang; Jue Wang; Haixia Xiao; William J. Liu; Jinghua Yan; Catherine W.-H. Zhang; Cui Hua Liu; Kanglin Wan; George F. Gao
T cell immune responses have played pivotal roles in host immune protection against Mycobacterium tuberculosis (MTB) infection. MTB specific antigen, Rv3615c (EspC), was identified to be as immunodominant as the well-known ESAT-6 and CFP-10, and has brought promising expectations to more sensitive T-cell based diagnosis and vaccine development. However, limited knowledge about the immunogenicity and diagnostic values of this antigen has restricted its application in clinical practice. Herein, the Rv3615c antigen was identified as a robust CTL immunoantigen with broadly cross-human leucocyte antigen (HLA) allele recognized peptides which may contribute to the broad recognition of Rv3615c antigen among the population. A three-antigen-cocktail (3-Ag-cocktail) comprising of ESAT-6, CFP-10 and Rv3615c was investigated in a multicenter, randomized and double-blinded study to evaluate its clinical diagnostic performances. A significantly improved sensitivity was demonstrated against the 3-Ag-cocktail compared with that against ESAT-6 and CFP-10. Both responsive magnitude and sensitivity were significantly lower in patients concurrently suffering from cancer, indicating its restriction in diagnosis of immunocomprised patients. In conclusion, inclusion of the Rv3615c antigen with multiple HLA restricted CTL epitopes would benefit the T-cell based diagnosis of MTB infection.