Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ce-Hui Mo is active.

Publication


Featured researches published by Ce-Hui Mo.


Journal of Agricultural and Food Chemistry | 2011

Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China.

Yan-Wen Li; Xiao-Lian Wu; Ce-Hui Mo; Yi-Ping Tai; Xian-Pei Huang; Lei Xiang

Thirteen antibiotics in soil from vegetable farmlands of the Pearl River Delta, southern China, were investigated. At least three antibiotics were detected in each sample. Six antibiotics including four quinolones, tetracycline, and sulfamethoxazole were detected in >94% of the samples. The total contents of three tetracyclines, eight sulfonamides, and four quinolones were not detected-242.6, 33.3-321.4, and 27.8-1537.4 μg/kg, respectively. The highest antibiotic concentrations were observed mainly in vegetable farmlands affiliated with livestock farms. Chlortetracycline, sulfameter, and quinolones in some samples exceed the ecotoxic effect trigger value (100 μg/kg) set by the Steering Committee of Veterinary International Committee on Harmonization. The composition and concentration of antibiotics in soil were correlated with vegetable species. This study has revealed an alarming condition of antibiotics in vegetable farmland soil. Further investigation including environmental fate, plant uptake, and human exposure to antibiotics by plant-derived food should be conducted.


Environmental Pollution | 2010

Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao

Yiruhan; Qiao-Jun Wang; Ce-Hui Mo; Yan-Wen Li; Peng Gao; Yi-Ping Tai; Yan Zhang; Zhi-Li Ruan; Jia-Wei Xu

Four fluoroquinolone antibiotics (norfloxacin, ciprofloxacin, lomefloxacin, and enrofloxacin) in tap water in Guangzhou and Macao were analyzed using high performance liquid chromatography fluorescence detection. The results showed that all target antibiotics were detected in high rate both in Guangzhou (77.5%) and Macao (100%), ranging from 1.0 to 679.7 ng/L (SD <or= 37.6) in Guangzhou, and from 2.0 to 37.0 ng/L (SD <or= 2.5) in Macao. The fluoroquinolone antibiotics pollution in tap water widely distributes in Guangzhou and Macao. In addition, the effect of rainfall on concentration of fluoroquinolone antibiotics in south China was also investigated. Our result indicates that the antibiotic concentration in tap water in Guangzhou tends to obviously reduce at the beginning of rainy season, even decreases below the limit of quantification immediately. Thus, it was clarified that the heavy rain in south China has the function of reducing the fluoroquinolone antibiotics concentrations in tap water.


Ecotoxicology and Environmental Safety | 2010

Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil

Qu-Sheng Li; ShaSha Cai; Ce-Hui Mo; Bei Chu; LiHua Peng; FangBing Yang

A pot experiment was carried out to evaluate the effects of heavy metals on biomass, chlorophyll, and antioxidative enzyme activities of eight vegetables grown in a saline soil. The heavy metal accumulation in vegetables was also investigated. Results show that biomass and chlorophyll content of crops decreased with the increase of heavy metal concentration while peroxidase activity increased at low concentration and decreased at high concentration. The total translocation factor values in the eight vegetables are in order: water spinach>Chinese kale>pakchoi>edible amaranth>leaf mustard>Chinese flowering cabbage>green capsicum>tomato. Tomato, which is the most salt tolerant crop of the eight vegetables, also is the most heavy metals resistant studied in terms of growth, peroxidase activity and heavy metals translocation. Salt tolerant fruit vegetables such as tomato might be potential crops for the safe use of saline soils polluted with heavy metals.


Langmuir | 2013

Porous Pr(OH)3 Nanostructures as High-Efficiency Adsorbents for Dye Removal

Teng Zhai; Shilei Xie; Xihong Lu; Lei Xiang; Minghao Yu; Wei Li; Chaolun Liang; Ce-Hui Mo; Feng Zeng; Tiangang Luan; Yexiang Tong

Herein we report the electrochemical synthesis of porous Pr(OH)(3) nanobelt arrays (NBAs), nanowire arrays (NWAs), nanowire bundles (NWBs), and nanowires (NWs) and their applications as dye absorbents in water treatment. These Pr(OH)(3) nanostructures exhibit high efficient and selective adsorption of the dyes with amine (-NH(2)) functional groups such as Congo red, reactive yellow, and reactive blue. The high efficiency and selectivity is attributed to the large effective surface area of the porous structure, plentiful hydroxyl groups, and basic sites on the Pr(OH)(3) surface. Furthermore, the toxicity studies of these porous Pr(OH)(3) nanostructure show a negligible effect on seed germination, indicating that they hold great potential as environmentally friendly absorbents in water treatment.


Science of The Total Environment | 2014

Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China.

Xiao-Lian Wu; Lei Xiang; Qing-Yun Yan; Yuan-Neng Jiang; Yan-Wen Li; Xian-Pei Huang; Hui Li; Quan-Ying Cai; Ce-Hui Mo

Organic fertilizer or manure containing antibiotics has been widely used in organic farms, but the distribution and potential impacts of antibiotics to the local environment are not well understood. In this study, four quinolone antibiotics in soil samples (n=69) from five organic vegetable farms in a subtropical city, Southern China, were analyzed using high performance liquid chromatography-tandem mass spectrometry. Our results indicated that quinolone compounds were ubiquitous in soil samples (detection frequency>97% for all compounds), and their concentrations ranged from not detectable to 42.0 μg/kg. Among the targets, enrofloxacin (ENR) was the dominant compound, followed by ciprofloxacin (CIP) and norfloxacin (NOR). The average total concentrations of four compounds in the soils were affected by vegetable types and species cultivated, decreasing in the order of fruit>rhizome>leaf vegetables. Moreover, the average concentrations of quinolone compounds (except ENR) in open-field soils were higher than those in greenhouse soils. The concentrations of quinolone antibiotics in this study were lower than the ecotoxic effect trigger value (100 μg/kg) proposed by the Veterinary Medicine International Coordination commission. Risk assessment based on the calculated risk quotients indicated that NOR, CIP, and ENR posed mainly medium to low risks to bacteria.


Chemosphere | 2014

Novel insights into anoxic/aerobic1/aerobic2 biological fluidized-bed system for coke wastewater treatment by fluorescence excitation–emission matrix spectra coupled with parallel factor analysis

Huase Ou; Chaohai Wei; Ce-Hui Mo; Haizhen Wu; Yuan Ren; Chunhua Feng

Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) was applied to investigate the contaminant removal efficiency and fluorescent characteristic variations in a full scale coke wastewater (CWW) treatment plant with a novel anoxic/aerobic(1)/aerobic(2) (A/O(1)/O(2)) process, which combined with internal-loop fluidized-bed reactor. Routine monitoring results indicated that primary contaminants in CWW, such as phenols and free cyanide, were removed efficiently in A/O(1)/O(2) process (removal efficiency reached 99% and 95%, respectively). Three-dimensional excitation-emission matrix fluorescence spectroscopy and PARAFAC identified three fluorescent components, including two humic-like fluorescence components (C1 and C3) and one protein-like component (C2). Principal component analysis revealed that C1 and C2 correlated with COD (correlation coefficient (r)=0.782, p<0.01 and r=0.921, p<0.01), respectively) and phenols (r=0.796, p<0.01 and r=0.914, p<0.01, respectively), suggesting that C1 and C2 might be associated with the predominating aromatic contaminants in CWW. C3 correlated with mixed liquor suspended solids (r=0.863, p<0.01) in fluidized-bed reactors, suggesting that it might represent the biological dissolved organic matter. In A/O(1)/O(2) process, the fluorescence intensities of C1 and C2 consecutively decreased, indicating the degradation of aromatic contaminants. Correspondingly, the fluorescence intensity of C3 increased in aerobic(1) stage, suggesting an increase of biological dissolved organic matter.


Journal of Agricultural and Food Chemistry | 2014

Analysis of Trace Microcystins in Vegetables Using Solid-Phase Extraction Followed by High Performance Liquid Chromatography Triple-Quadrupole Mass Spectrometry

Yan-Wen Li; Xiao-Jing Zhan; Lei Xiang; Zhe-Shen Deng; Bin-Hui Huang; Hong-Fei Wen; Teng-Fei Sun; Quan-Ying Cai; Hui Li; Ce-Hui Mo

A selective and sensitive method for the simultaneous detection of three common and hazardous microcystins (microcystins-LR, -RR, and -YR) in various vegetables was established using solid-phase extraction followed by high performance liquid chromatography coupled with mass spectrometry. The methanol-water proportion ratio of the extraction solvent and its acidity, as well as the efficiencies of solid-phase extraction, were evaluated to optimize a pretreatment procedure for extracting the microcystins from 10 vegetable matrices. The limits of detection and quantitation were below 7.5 μg/kg (dw) and 25 μg/kg (dw), respectively, in different vegetable matrices. The recoveries of the microcystins in the 10 vegetable matrices ranged from 61.3 to 117.3%, with RSDs of 0.2-18.3%. The established method was used to analyze 28 field vegetable samples collected from the sides of Lake Dianchi, and microcystin-RR was found in almost all samples at concentrations of 36.4-2352.2 μg/kg (dw).


Science of The Total Environment | 2016

Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil.

Hai-Ming Zhao; Huan Du; Jing Lin; Xue-Bin Chen; Yan-Wen Li; Hui Li; Quan-Ying Cai; Ce-Hui Mo; Hua-Ming Qin; Ming Hung Wong

A newly isolated strain Agromyces sp. MT-O could utilize various phthalates and efficiently degraded di-(2-ethylhexyl) phthalate (DEHP). Response surface methodology was successfully employed for the optimization of culture conditions including pH (7.2), temperature (29.6), and inoculum size (OD600 of 0.2), resulting in almost complete degradation of DEHP (200mgL(-1)) within 7days. At different initial concentrations (50-1000mgL(-1)), DEHP degradation curves were fitted well with the first-order kinetic model, and the half-life of DEHP degradation ranged from 0.83 to 2.92days. Meanwhile, the substrate inhibition model was used to describe the special degradation rate with qmax, Ks, and Ki of 0.6298day(-1), 86.78mgL(-1), and 714.3mgL(-1), respectively. The GC-MS analysis indicated that DEHP was degraded into mono-ethylhexyl phthalate and phthalate acid before its complete mineralization. Bioaugmentation of DEHP-contaminated soils with strain MT-O has greatly enhanced DEHP disappearance rate in soils, providing great potential for efficiently remediating DEHP-contaminated environment.


International Journal of Phytoremediation | 2014

Plant Uptake and Enhanced Dissipation of Di(2-Ethylhexyl) Phthalate (DEHP) in Spiked Soils by Different Plant Species

Yan-Wen Li; Quan-Ying Cai; Ce-Hui Mo; Qiao-Yun Zeng; Huixiong Lü; Qu-Sheng Li; Guo-Sheng Xu

This study was conducted to investigate the uptake, accumulation and the enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) spiked in soil (with a concentration of 117.4 ± 5.2 mg kg−1) by eleven plants including eight maize ( Zea mays) cultivars and three forage species (alfalfa, ryegrass and teosinte). The results showed that, after 40 days of treatment, the removal rates of DEHP ranged from 66.8% (for the control) to 87.5% (for the maize cultivar of Huanong-1). Higher removal rate was observed during the first 10 days than the following days. Plants enhanced significantly the dissipation of DEHP in soil. Enhanced dissipation amount in planted soil was 13.3–122 mg pot−1 for DEHP, and a net removal of 2.2%–20.7% of the initial DEHP was obtained compared with non-plant soil. The contribution of plant uptake to the total enhanced dissipation was <0.3%, and the enhanced dissipation of soil DEHP might be derived from plant-promoted biodegradation and sorption stronger to the soil. Nevertheless, the capability in accumulation and enhanced dissipation of DEHP from spiked soils varied within different species and cultivars.


Science of The Total Environment | 2017

Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships

Nai-Xian Feng; Jiao Yu; Hai-Ming Zhao; Yu-Ting Cheng; Ce-Hui Mo; Quan-Ying Cai; Yan-Wen Li; Hui Li; Ming Hung Wong

Soil pollution with organic contaminants is one of the most intractable environmental problems today, posing serious threats to humans and the environment. Innovative strategies for remediating organic-contaminated soils are critically needed. Phytoremediation, based on the synergistic actions of plants and their associated microorganisms, has been recognized as a powerful in situ approach to soil remediation. Suitable combinations of plants and their associated endophytes can improve plant growth and enhance the biodegradation of organic contaminants in the rhizosphere and/or endosphere, dramatically expediting the removal of organic pollutants from soils. However, for phytoremediation to become a more widely accepted and predictable alternative, a thorough understanding of plant-endophyte interactions is needed. Many studies have recently been conducted on the mechanisms of endophyte-assisted phytoremediation of organic contaminants in soils. In this review, we highlight the superiority of organic pollutant-degrading endophytes for practical applications in phytoremediation, summarize alternative strategies for improving phytoremediation, discuss the fundamental mechanisms of endophyte-assisted phytoremediation, and present updated information regarding the advances, challenges, and new directions in the field of endophyte-assisted phytoremediation technology.

Collaboration


Dive into the Ce-Hui Mo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiao-Yun Zeng

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huixiong Lü

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dong-Mei Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qi-Tang Wu

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge