Qi-Tang Wu
South China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qi-Tang Wu.
Plant and Soil | 2010
Fengjie Liu; Ye-Tao Tang; Ruijun Du; Haiyan Yang; Qi-Tang Wu; Rongliang Qiu
Positive root response to metals may enhance metal accumulation for greater requirement in hyperaccumulators. The effects of spatially heterogeneous Zn/Cd addition on root allocation, metal accumulation, and growth of the Zn/Cd hyperaccumulator Sedum alfredii were assessed in a pot experiment. Young shoots of S. alfredii were grown with or without supplied Zn/Cd. Two concentrations were used of each metal, and each metal concentration had one homogeneous and two heterogeneous treatments. Growth increased by 1.6–3.2 times with the increasing overall dose of Zn/Cd addition, and shoot biomass was positively correlated with shoot Zn/Cd concentration (P < 0.001). In all heterogeneous treatments, the plants consistently allocated approximately 90% of root biomass to the metal-enriched patches, and shoot Zn/Cd contents were greater than or similar to those in the homogeneous treatment at each metal concentration. Plants in the control treatment showed symptoms of Zn deficiency, although their shoots had Zn concentrations 100-fold higher than the critical deficiency value for most plants. We conclude that S. alfredii has evolved root foraging mechanisms associated with its greater requirements for Zn/Cd. These results could have important implications both for phytoremediation and for investigation of positive role of Cd in higher plants.
Chemosphere | 2016
Xiaofang Guo; Zebin Wei; Qi-Tang Wu; Chunping Li; Tianwei Qian; Wei Zheng
In a field experiment on multi-metal contaminated soil, we investigated the efficiency of Cd, Pb, Zn, and Cu removal by only mixture of chelators (MC) or combining with FeCl3. After washing treatment, a co-cropping system was performed for heavy metals to be extracted by Sedum alfredii and to produce safe food from Zea mays. We analyzed the concentration of heavy metals in groundwater to evaluate the leashing risk of soil washing with FeCl3 and MC. Results showed that addition of FeCl3 was favorable to the removal of heavy metals in the topsoil. Metal leaching occurred mainly in rain season during the first co-cropping. The removal rates of Cd, Zn, Pb, and Cu in topsoil were 28%, 53%, 41%, and 21% with washing by FeCl3+MC after first harvest. The application of FeCl3 reduced the yield of S. alfredii and increased the metals concentration of Z. mays in first harvest. However, after amending soil, the metals concentration of Z. mays in FeCl3+MC treatment were similar to that only washing by MC. The grains and shoots of Z. mays were safe for use in feed production. Soil washing did not worsen groundwater contamination during the study period. But the concentration of Cd in groundwater was higher than the limit value of Standard concentrations for Groundwater IV. This study suggests that soil washing using FeCl3 and MC for the remediation of multi-metal contaminated soil is potential feasibility. However, the subsequent measure to improve the washed soil environment for planting crop is considered.
Plant and Soil | 2004
Qi-Tang Wu; Zhaoli Xu; Qingqiang Meng; Emilie Gérard; Jean-Louis Morel
Experiments on Cd desorption were conducted with a range of water-to-soil ratios to assess the desorption characteristics of Cd in soils and the availability of Cd for absorption by plant roots and leaching to groundwater, Soil samples were collected from sites contaminated by a former Pb and Zn smelter, by sewage irrigation, or with artificial additions of Cd and sewage sludge. Glasshouse pot experiments were conducted in which the yield and Cd uptake of crop plants were determined. Cadmium leached from soil columns was also studied using soil lysimeters. The soil solution Cd concentration decreased with increasing solution-to-soil ratio and followed a negative power function. Two constants obtained from logarithmic linear regression were identified. The intercept (C1) was Cd concentration in the soil solution where the solution/soil ratio was equal to 1 and this constant was the intensity factor of the initial element supply in the soil. The slope (a) showed a decreasing trend for Cd concentration in the soil solution which was related to the soil buffering capacity. A corrected concentration (C1/a) is proposed for expressing soil desorption ability. This combined index was significantly correlated with Cd uptake by plants and also with Cd leached from soil columns.
Bioresource Technology | 2012
Quan-Ying Cai; Ce-Hui Mo; Huixiong Lü; Qiao-Yun Zeng; Qi-Tang Wu; Yan-Wen Li
In order to investigate the occurrence and removal of semivolatile organic chemicals (SVOCs) in the compost of sewage sludge, three different composting treatments, including manual turned compost (MTC), intermittent aerated compost (IAC), and naturally aerated compost (NAC) were conducted. Thirty SVOCs in composts were Soxhlet-extracted and analyzed by GC/MS. After 56 days of composting, the total concentrations of 16 polycyclic aromatic hydrocarbons (∑PAHs) ranged from 0.55 to 8.20 mg kg(-1) dry weight, decreasing in order of IAC>MTC>NAC. The total concentrations of six phthalic acid esters (∑PAEs), five chlorobenzenes or three nitroaromatic compounds were less than 5.0 mg kg(-1). Compared with the initial concentrations in sewage sludge, a significant reduction of ∑PAHs, ∑PAEs and chlorobenzenes was observed. The removal rates of ∑PAHs and ∑PAEs ranged from 54.6% to 75.9% and from 58.3% to 90.6%, respectively. Compared with different composting processes, MTC showed the highest potential for removal of SVOCs.
Journal of Environmental Sciences-china | 2013
Chengai Jiang; Qi-Tang Wu; Shucai Zeng; Xian Chen; Zebin Wei; Xinxian Long
Previous soil pot and field experiments demonstrated that co-cropping the hyperaccumulator Sedum alfredii with maize increased Zn phytoextraction by S. alfredii and decreased Zn uptake by maize shoots. This hydroponic experiment was conducted to investigate whether the facilitation of Zn phytoextraction by S. alfredii resulted from improved dissolution in this co-cropping system and its relation to root exudates. S. alfredii and maize were mono- and co-cropped (without a root barrier) in nutrient solution spiked with four Zn compounds, ZnS, ZnO, Zn3(PO4)2 and 5ZnO x 2CO3-4H2O (represented as ZnCO3) at 1000 mg/L Zn for 15 days without renewal of nutrient solution after pre-culture. The root exudates were collected under incomplete sterilization and analyzed. The results indicated that the difference in Zn salts had a greater influence on the Zn concentration in maize than for S. alfredii, varying from 210-2603 mg/kg for maize shoots and 6445-12476 mg/kg for S. alfredii in the same order: ZnCO3 > ZnO > Zn3(PO4)2 > ZnS. For the four kinds of Zn sources in this experiment, co-cropping with maize did not improve Zn phytoextraction by S. alfredii. In most cases, compared to co-cropped and mono-cropped maize, mono-cropped S. alfredii resulted in the highest Zn2+ concentration in the remaining nutrient solution, and also had a higher total concentration of low molecular weight organic acids (LMWOA) and lower pH of root exudation. Root exudates did partly influence Zn hyperaccumulation in S. alfredii.
Bioresource Technology | 2016
Liang Hei; Charles C.C. Lee; Hui Wang; Xiao-Yan Lin; Xiao-Hong Chen; Qi-Tang Wu
The study was carried out to investigate the use of a high biomass plant, Pennisetum hydridum, to treat municipal sewage sludge (MSS). An experiment composed of plots with four treatments, soil, fresh sludge, soil-sludge mixture and phyto-treated sludge, was conducted. It showed that the plant could not survive directly in fresh MSS when cultivated from stem cuttings. The experiment transplanting the incubated cutting with nurse medium of P. hydridum in soil and fresh MSS, showed that the plants grew normally in fresh MSS. The pilot experiment of P. hydridum and Alocasia macrorrhiza showed that the total yield and nutrient amount of P. hydridum were 9.2 times and 3.6 times more than that of A. macrorrhiza. After plant treatment, MSS was dried, stabilized and suitable to be landfilled or incinerated, with a calorific value of about 5.6MJ/kg (compared to the initial value of 1.9MJ/kg fresh sludge).
Journal of Soils and Sediments | 2018
Xiaofang Guo; Guixiang Zhang; Zebin Wei; Liping Zhang; Qiusheng He; Qi-Tang Wu; Tianwei Qian
PurposeSoil washing with chelators is a viable treatment alternative for remediating multi-contaminated soils. The aim of this study was to investigate the removal efficiencies of Cd, Zn, Pb, and Cu in alkaline and acid multi-metal-contaminated soils by washing with the mixed chelators (MC).Materials and methodsThe batch experiments were carried out to evaluate the removal efficiencies of heavy metals in contaminated soils by the MC with different molar ratios of EDTA, GLDA, and citric acid, and evaluated the washing factors, including contact time, pH, MC concentration, and single and multiple washings at the same MC dose, on the removal efficiencies.Results and discussionResults showed that the removal efficiencies for Cd, Zn, Pb, and Cu by the MC (the molar ratio of EDTA, GLDA, and citric acid was 1:1:3) were as much as those of the only EDTA washing from both soil at the same application dose of total chelators; moreover, the application dose of EDTA decreased by 80%. For the alkaline-contaminated soil, the removal efficiencies of Cd, Zn, Pb, and Cu decreased with the increasing of the solution pH, which was opposite to acid-contaminated soil. This was attributed to that the metal-ligand complex could be obviously re-adsorbed on the soil surface sites, particularly in low pH values. The removal efficiencies of Cd, Zn, Pb, and Cu depended on MC concentration. A higher MC concentration led to a more effective removal of Cd, Zn, Pb, and Cu in alkaline-contaminated soil; however, their changes were slightly increased in acid-contaminated soil. At the same dose of MC, single washing with higher MC concentration might be favorable to remove heavy metals, moreover, with much less wastewater generation.ConclusionsThe MC (the molar ratio of EDTA, GLDA, and citric acid was 1:1:3) may be a useful, environmentally friendly, and cost-effective chelators to remediate heavily multi-metal-contaminated soil.
Environmental Technology | 2015
Tianfen Xu; Fangwen Xie; Zebin Wei; Shucai Zeng; Qi-Tang Wu
The land application of sewage sludge has the potential risk of transferring heavy metals to soil or groundwater. The agricultural reuse of sludge leachate could be a cost-effective way to decrease metal contamination. Sludge leachate collected during the phytoremediation of sludge by co-cropping with Sedum alfredii and Zea mays was used for irrigating vegetables in a field experiment. Results indicate that the concentrations of Cu, Zn, Pb, and Cd in sludge leachates complied with the National Standards for agricultural irrigation water in China. For the vegetable crop Ipomoea aquatica, nutrients obtained only from the sludge leachate were not sufficient to support growth. For the second crop, Brassica parachinensis, no differences in biomass were observed between the treatment with leachate plus a half dose of inorganic fertilizer and the treatment with a full dose of inorganic fertilizers. The concentrations of heavy metals in I. aquatica and B. parachinensis were not significantly affected by the application of sludge leachates. Compared with initial values, there were no significant differences in Zn, Cd, Cu, and Pb concentrations in soil following treatment with sludge leachate. This study indicates that on range lands, sludge phytoremediation can be conducted at the upper level, and the generated sludge leachate can be safely and easily used in crop production at the lower level.
Archive | 2018
Qi-Tang Wu; Zebin Wei; Xinxian Long; Chengai Jiang
In South China there are many metal co-mines, and thus soils contaminated by acid mine drainage and multi-metals are frequently encountered. It is urgently needed to remediate the contaminated soils and to improve food safety. Technologies which are of low cost and permeate nonstop agricultural productions are especially welcome. Studies have been undertaken according to these needs to reduce the heavy metals in crops and in soils. It was recommended to use Ca(NO3)2 or NH4HCO3, Ca-Mg-phosphate, and K2SO4 as chemical fertilizers for Cd-contaminated soils. Experiments showed that the waste CaCO3 from sugar industry was useful to reduce the bioavailability and the uptake of Cd, Hg, and Pb by leaf vegetables. Low-Cd cultivars/varieties of rice (Oryza sativa), Cantonese cabbage (Brassica parachinensis), and corn were selected. Using these cultivars could reduce the metal concentration in crop by about 50% than using normal cultivars. Co-crop/intercrop of low-Cd cultivar of corn with Cd hyperaccumulator Sedum alfredii was proved feasible to produce safe food/feed and meanwhile to reduce significantly Cd content in soil. Studies showed that the bioavailability of heavy metals could still be high after soil washing by EDTA; liming the chelator-washed soil may release the adsorbed metal chelates and increased the availability of metals to crops and to leaching. Soil washing using FeCl3 for the remediation of Pb- and Cd-contaminated soil is useful. The contamination risk of underground water by heavy metals with normal chemical washing is minimal in the acid ferralsol regions such as South China and can be further reduced by amending the soil of deep layers.
Chemosphere | 2018
Xiaofang Guo; Guohui Zhao; Guixiang Zhang; Qiusheng He; Zebin Wei; Wei Zheng; Tianwei Qian; Qi-Tang Wu
Soil washing is an effective technology for the remediation of multi-metal contaminated soils. However, bioavailability of residual heavy metals in soils and soil properties could be changed during washing processes. This study investigated the effects of EDTA, FeCl3 and mixed chelators (MC) on bioavailability of residual heavy metals in soils and soil biological properties after soil washing. The results showed that soil washing by chelators successfully decreased the total concentration of heavy metals in soils, while it did not effectively decrease the exchangeable fraction of heavy metals, especially for calcareous contaminated soil. The toxic effects of the washed soils seemed to exhibit higher correlations with the changes in the soil properties such as soil pH and nutrient concentrations. As compared with FeCl3 and EDTA, MC tended to moderately change soil properties (e.g., pH, total N, available N, available P, and exchangeable K, Ca, and Mg). Additionally, MC-washed soil had the least influence on the soil enzymes activities, and had the highest germination and growth of Chinese cabbage. Accordingly, MC is a moderate washing solution in the removal of heavy metals from multi-metal contaminated soils, and had minimal negative effects on soil qualities.